Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 10 trang 215 Sách bài tập (SBT) Đại số và giải tích 11

Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ

Cho hàm số

\(f\left( x \right) = {x^3} + b{x^2} + cx + d\) ;    (C)

\(g\left( x \right) = {x^2} - 3x - 1.\)

a) Xác định b, c, d sao cho đồ thị (C) đi qua các điểm \(\left( {1;3} \right),\left( { - 1; - 3} \right)\) và \(f'\left( {{1 \over 3}} \right) = {5 \over 3}\) ;

b) Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ \({x_0} = 1\) ;

c) Giải phương trình \(f'\left( {\sin t} \right) = 3\) ;

d) Giải phương trình \(f''\left( {\cos t} \right) = g'\left( {\sin t} \right)\) ;

e) Tìm giới hạn \(\mathop {\lim }\limits_{z \to 0} {{f''\left( {\sin 5z} \right) + 2} \over {g'\left( {\sin 3z} \right) + 3}}.\)

Giải :

a)

\(\eqalign{
& c = 2,b = - 1,d = 1 \cr
& \Rightarrow f\left( x \right) = {x^3} - {x^2} + 2x + 1{\rm{ }}; \cr} \)

b) \(f'\left( x \right) = 3{x^2} - 2x + 2 \Rightarrow f'\left( 1 \right) = 3.\)

Phương trình tiếp tuyến tại \(M\left( {1;3} \right)\) là

\(y - 3 = 3\left( {x - 1} \right)\) hay \(y = 3x.\)

c)

\(\eqalign{
& f'\left( {\sin t} \right) = 3{\sin ^2}t - 2\sin t + 2. \cr
& f'\left( {\sin t} \right) = 3 \cr
& \Leftrightarrow 3{\sin ^2}t - 2\sin t - 1 = 0 \cr
& \Leftrightarrow \left[ \matrix{
\sin t = 1 \hfill \cr
\sin t = - {1 \over 3} \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
t = {\pi \over 2} + k2\pi \hfill \cr
t = \arcsin \left( { - {1 \over 3}} \right) + k2\pi \hfill \cr
t = \pi - \arcsin \left( { - {1 \over 3}} \right) + k2\pi \hfill \cr} \right.\left( {k \in Z} \right). \cr} \)

d)

\(\eqalign{
& f''\left( x \right) = 6x - 2 \cr
& \Rightarrow f''\left( {\cos t} \right) = 6\cos t - 2 \cr} \) ;

\(\eqalign{
& g'\left( x \right) = 2x - 3 \cr
& \Rightarrow g'\left( {\sin t} \right) = 2\sin t - 3. \cr} \)

Vậy

\(\eqalign{
& 6\cos t - 2 = 2\sin t - 3 \cr
& \Leftrightarrow 2\sin t - 6\cos t = 1 \cr
& \Leftrightarrow \sin t - 3\cos t = {1 \over 2}. \cr} \)

Đặt \(\tan \varphi  = 3,\) ta được

\(\sin \left( {t - \varphi } \right) = {1 \over 2}\cos \varphi  = \alpha .\) Suy ra 

\(\left[ \matrix{
t = \varphi + \arcsin \alpha + k2\pi \hfill \cr
t = \pi + \varphi - \arcsin \alpha + k2\pi {\rm{ }}\left( {k \in Z} \right). \hfill \cr} \right.\)

e)

\(\mathop {\lim }\limits_{z \to 0} {{f''\left( {\sin 5z} \right) + 2} \over {g'\left( {\sin 3z} \right) + 3}} = \mathop {\lim }\limits_{z \to 0} {{6\sin 5z} \over {2\sin 3z}} = 5\mathop {\lim }\limits_{z \to 0} {{{{\sin 5z} \over {5z}}} \over {{{\sin 3z} \over {3z}}}} = 5.\)

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Xem thêm tại đây: Ôn tập Chương V - Đạo hàm