Bài 1.21 trang 33 Sách bài tập (SBT) Toán Hình học 10Chứng minh rằng: Chứng minh rằng: a) Nếu \(\overrightarrow a = \overrightarrow b \) thì \(m\overrightarrow a = m\overrightarrow b \) b) \(m\overrightarrow a = m\overrightarrow b \) và \(m \ne 0\) thì \(\overrightarrow a = \overrightarrow b \) c) Nếu \(m\overrightarrow a = n\overrightarrow a \) và \(\overrightarrow a \ne 0\) thì m = n Gợi ý làm bài a) \(\overrightarrow a = \overrightarrow b = > \left| {\overrightarrow a } \right| = \left| {\overrightarrow b } \right|\) và \(\overrightarrow a ,\overrightarrow b \) cùng hướng. Ta có \(\left| {m\overrightarrow a } \right| = \left| m \right|\left| {\overrightarrow a } \right|,\left| {m\overrightarrow b } \right| = \left| m \right|\left| {\overrightarrow b } \right|\) do đó \(\left| {m\overrightarrow a } \right| = \left| {m\overrightarrow b } \right|\) \(m\overrightarrow a ,m\overrightarrow b \) cùng hướng . Vậy \(m\overrightarrow a = m\overrightarrow b \) b) \(m\overrightarrow a = m\overrightarrow b = > \left| {m\overrightarrow a } \right| = \left| {m\overrightarrow b } \right| = > \left| {\overrightarrow a } \right| = \left| {\overrightarrow b } \right|\) vì \(m \ne 0\) \(m\overrightarrow a ,m\overrightarrow b \) cùng hướng => \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng. Vậy \(\overrightarrow a = \overrightarrow b \) c) \(m\overrightarrow a = n\overrightarrow a = > \left| {m\overrightarrow a } \right| = \left| {n\overrightarrow a } \right| = > \left| m \right| = \left| n \right|\) vì \(\overrightarrow a \ne \overrightarrow 0 \) \(m\overrightarrow a ,n\overrightarrow a \) cùng hướng => m và n cùng dấu. Vậy m = n. Sachbaitap.net
Xem lời giải SGK - Toán 10 - Xem ngay >> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 3: Tích của vec tơ với một số
|