Bài 1.40 trang 40 Sách bài tập (SBT) Hình học 11Gọi A’, B’ và C’ tương ứng là ảnh của ba điểm A, B và C qua phép đồng dạng. Gọi A’, B’ và C’ tương ứng là ảnh của ba điểm A, B và C qua phép đồng dạng. Chứng minh rằng nếu \(\overrightarrow {AB} = p\overrightarrow {AC} \) thì \(\overrightarrow {A'B'} = p\overrightarrow {A'C'} \), trong đó p là một số. Từ đó chứng minh rằng phép đồng dạng biến ba điểm thẳng hàng thành ba điểm thẳng hàng và nếu điểm B nằm giữa hai điểm A và C thì điểm B' nằm giữa hai điểm A’ và C’. Giải: Để ý rằng \(\eqalign{ Ta có: \({\left( {\overrightarrow {A'B'} - p\overrightarrow {A'C'} } \right)^2} = A'B{'^2} - 2p\overrightarrow {A'B'} .\overrightarrow {A'C'} + {p^2}A'C{'^2}\) \(\eqalign{ Từ đó suy ra \(\overrightarrow {A'B'} - p\overrightarrow {A'C'} = \overrightarrow 0 \) Giả sử ba điểm \(A,B,C\) thẳng hàng và điểm B nằm giữa hai điểm A và C. Khi đó \(\overrightarrow {AB} = t\overrightarrow {AC} \), với \(0 < t < 1\). Áp dụng bài 1.39 ta cũng có \(\overrightarrow {A'B} = t\overrightarrow {A'C'} \), với \(0 < t < 1\). Do đó ba điểm \(A',B',C'\) thẳng hàng và điểm B' nằm giữa hai điểm A' và C'. Sachbaitap.com
Xem lời giải SGK - Toán 11 - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Ôn tập Chương I. Phép dời hình và phép đồng dạng trong mặt phẳng
|
Dựng tam giác BAC vuông cân tại A có C là một điểm cho trước, còn hai đỉnh A, B lần lượt thuộc hai đường thẳng a, b song song với nhau cho trước.
Dựng tam giác BAC vuông cân tại A có C là một điểm cho trước, còn hai đỉnh A, B lần lượt thuộc hai đường thẳng a, b song song với nhau cho trước.
Viết phương trình đường thẳng d’ là ảnh của d qua phép đối xứng tâm