Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 20 trang 194 Sách bài tập (SBT) Toán Đại số 10

Không sử dụng bảng số và máy tính, hãy tính

Không sử dụng bảng số và máy tính, hãy tính

a) \({\sin ^4}{\pi  \over {16}} + {\sin ^4}{{3\pi } \over {16}} + {\sin ^4}{{5\pi } \over {16}} + {\sin ^4}{{7\pi } \over {16}}\)

b) \(\cot 7,{5^0} + \tan 67,{5^0} - \tan 7,{5^0} - \cot 67,{5^0}\)

Gợi ý làm bài

a) \({\sin ^4}{\pi  \over {16}} + {\sin ^4}{{3\pi } \over {16}} + {\sin ^4}{{5\pi } \over {16}} + {\sin ^4}{{7\pi } \over {16}}\)

\( = {\left( {{{1 - \cos {\pi  \over 8}} \over 2}} \right)^2} + {\left( {{{1 - \cos {{3\pi } \over 8}} \over 2}} \right)^2} + {\left( {{{1 - \cos {{5\pi } \over 8}} \over 2}} \right)^2} + {\left( {{{1 - \cos {{7\pi } \over 8}} \over 2}} \right)^2}\)

\( = {1 \over 4}\left( {1 - 2\cos {\pi  \over 8} + {{\cos }^2}{\pi  \over 8} + 1 - 2\cos {{3\pi } \over 8} + {{\cos }^2}{{3\pi } \over 8} + 1 - 2\cos {{5\pi } \over 8} + {{\cos }^2}{{5\pi } \over 8} + 1 - 2\cos {{7\pi } \over 8} + {{\cos }^2}{{7\pi } \over 8}} \right)\)

\( = 1 - {1 \over 2}\left( {\cos {\pi  \over 8} + \cos {{3\pi } \over 8} + \cos {{5\pi } \over 8} + \cos {{7\pi } \over 8}} \right) + {1 \over 4}\left( {{{1 + \cos {\pi  \over 4}} \over 2} + {{1 + \cos {{3\pi } \over 4}} \over 2} + {{1 + \cos {{5\pi } \over 4}} \over 2} + {{1 + \cos {{7\pi } \over 4}} \over 2}} \right)$\)

=\(1 - {1 \over 2}\left( {\cos {\pi  \over 8} + \cos {{3\pi } \over 8} - \cos {{3\pi } \over 8} - \cos {\pi  \over 8}} \right) + {1 \over 8}\left( {4 + {{\sqrt 2 } \over 2} - {{\sqrt 2 } \over 2} - {{\sqrt 2 } \over 2} + {{\sqrt 2 } \over 2}} \right)\)

= \({3 \over 2}\)

b) \(\cot 7,{5^0} + \tan 67,{5^0} - \tan 7,{5^0} - \cot 67,{5^0}\)

= \({{\cos 7,{5^0}} \over {\sin 7,{5^0}}} - {{\sin 7,{5^0}} \over {\cos 7,{5^0}}} + {{\sin 67,{5^0}} \over {\cos 67,{5^0}}} - {{\cos 67,{5^0}} \over {\sin 67,{5^0}}}\)

= \({{{{\cos }^2}7,{5^0} - {{\sin }^2}7,{5^0}} \over {\sin 7,{5^0}\cos 7,{5^0}}} + {{{{\sin }^2}67,{5^0} - {{\cos }^2}67,{5^0}} \over {sin67,{5^0}\cos 67,{5^0}}}\)

= \(\eqalign{
& {{\cos {{15}^0}} \over {{1 \over 2}\sin {{15}^0}}} - {{\cos {{135}^0}} \over {{1 \over 2}\sin {{135}^0}}} \cr
& = {{2(\sin {{135}^0}\cos {{15}^0} - \cos {{135}^0}\sin {{15}^0})} \over {\sin {{15}^0}\sin {{135}^0}}} \cr} \)

= \({{\sin ({{135}^0} - {{15}^0})} \over {\sin ({{45}^0} - {{30}^0})\sin ({{180}^0} - {{45}^0})}}\)

= \({{2\sin {{120}^0}} \over {(\sin {{45}^0}\cos {{30}^0} - \cos {{45}^0}\sin {{30}^0})sin{{45}^0}}}\)

\(\eqalign{
& = {{\sqrt 3 } \over {{{\sqrt 2 } \over 2}({{\sqrt 3 } \over 2} - {1 \over 2}).{{\sqrt 2 } \over 2}}} \cr
& = {{4\sqrt 3 } \over {\sqrt 3 - 1}} = 6 + 2\sqrt 3 \cr} $\)

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Xem thêm tại đây: Bài 3: Công thức lượng giác