Bài 21 trang 58 Sách bài tập Hình học lớp 12 Nâng caoCho hình trụ có bán kính đáy bằng R, Cho hình trụ có bán kính đáy bằng R, chiều cao OO’ bằng h, A và B là hai điểm thay đổi trên hai đường tròn đáy sao cho AB = a không đổi \(\left( {h < a < \sqrt {{h^2} + 4{R^2}} } \right)\). 1) Chứng minh góc giữa hai đường thẳng AB và OO’ không đổi. 2) Chứng minh khoảng cách giữa hai đường thẳng AB và OO’ không đổi. Giải
1) Gọi AA’ là một đường sinh của hình trụ thì AA’=h và \({\rm{AA'//}}OO'\), khi ấy \(\alpha = \widehat {BAA'}\) là góc giữa AB và OO’ và \(\cos \alpha = {{AA'} \over {AB}} = {h \over a}.\) Điều này khẳng định góc giữa AB và OO’ không đổi. 2) Gọi I là trung điểm của A’B thì có \(O'I \bot mp(AA'B),\) mặt khác \(OO'//mp(AA'B),\) vậy O’I là khoảng cách giữa AB và OO’. Vì O’I là trung tuyến của tam giác A’O’B có ba cạnh là \(A'B = \sqrt {{a^2} - {h^2}} ,O'A' = O'B' = R\) nên O'I có độ dài không đổi. Dễ thấy \(O'I = \sqrt {{R^2} - {{{a^2} - {h^2}} \over 4}} .\) Sachbaitap.com
Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 2, 3 : Khái niệm về mặt tròn xoay. Mặt trụ, hình trụ và khối trụ
|
Cho hình lăng trụ lục giác đều ABCDEF.A’B’C’D’E’F’ có