Bài 2.25 trang 65 sách bài tập (SBT) – Hình học 12Cho lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a và có đường cao h. Cho lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a và có đường cao h. a) Một hình trụ có các đường tròn đáy tiếp xúc với các cạnh của tam giác đáy được gọi là hình trụ nội tiếp trong lăng trụ. Hãy tính diện tích xung quanh của hình trụ nội tiếp đó. b) Gọi I là trung điểm của cạnh BC. Đường thẳng A’I cắt hình trụ nội tiếp nói trên theo một đoạn thẳng. Tính độ dài đoạn thẳng đó. Hướng dẫn làm bài: a) Hình trụ nội tiếp trong lăng trụ tam giác đều có đường tròn đáy tiếp xúc tại trung điểm các cạnh của tam giác đáy. Gọi I là trung điểm của cạnh BC, r là bán kính đáy của hình trụ nội tiếp trong lăng trụ, ta có: \(AI = {{a\sqrt 3 } \over 2}\) . Do đó, \(r = {{a\sqrt 3 } \over 6}\) Ta có diện tích xung quanh của hình trụ nội tiếp lăng trụ là: \({S_{xq}} = 2\pi rl = 2\pi {{a\sqrt 3 } \over 6}.h = {{\sqrt 3 \pi ah} \over 3}\) b) Ta có mặt phẳng (AA’I) là mặt phẳng qua trục hình trụ. Mặt phẳng này cắt hình trụ theo thiết diện là hình chữ nhật IKK’I’. Đoạn A’I cắt KK’ tại M nên cắt hình trụ theo đoạn IM. Ta có: \({{KM} \over {AA'}} = {{IK} \over {IA}} = {2 \over 3}\Rightarrow KM = {2 \over 3}h\) Xét tam giác vuông IKM ta có: \(I{M^2} = I{K^2} + K{M^2} = {{3{a^2}} \over 9} + {{4{h^2}} \over 9} = {{3{a^2} + 4{h^2}} \over 9}\) Vậy \(IM = {{\sqrt {3{a^2} + 4{h^2}} } \over 3}\) Sachbaitap.com
Xem lời giải SGK - Toán 12 - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
ĐỀ TOÁN TỔNG HỢP - CHƯƠNG II - HÌNH HỌC 12
|
Cho hình chóp S.ABC và biết rằng có một mặt cầu tiếp xúc với tất cả các cạnh bên của hình chóp đồng thời tiếp xúc với ba cạnh của đáy tại trung điểm của mỗi cạnh đáy. Chứng minh hình chóp đó là hình chóp đều.
Trong mặt phẳng a, cho tam giác ABC vuông tại A có cạnh AC = a và có cạnh huyền BC = 2a. Cũng trong mặt phẳng đó cho nửa đường tròn đường kính AB cắt cạnh BC tại M.
Mặt phẳng (Q) song song với mặt phẳng (P) cắt ∆ và ∆' lần lượt tại M và M’. Gọi M1 là hình chiếu vuông góc của M lên mặt phẳng (P).
Cho tam giác vuông cân ABC có cạnh huyền AB = 2a. Trên đường thẳng d đi qua A và vuông góc với mặt phẳng (ABC), lấy một điểm S khác A, ta được tứ diện SABC.