Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 23, 24, 25, 26 trang 55 SGK Toán 9 tập 1 - Luyện tập

Giải bài 23, 24, 25, 26 trang 55 sách giáo khoa Toán lớp 9 tập 1 bài Luyện tập. Bài 24 Cho hai hàm số bậc nhất y = 2x + 3k và y = (2m + 1)x + 2k - 3. Tìm điều kiện đối với m và k để đồ thị của hai hàm số là: a) Hai đường thẳng cắt nhau;

Bài 23 trang 55 SGK Toán lớp 9 tập 1

Câu hỏi:

Cho hàm số \(y = 2x + b\). Hãy xác định hệ số \(b\) trong mỗi trường hợp sau:

a) Đồ thị của hàm số đã cho cắt trục tung tại điểm có tung độ bằng \(-3\);

b) Đồ thị của hàm số đã cho đi qua điểm \(A(1; 5)\).

Lời giải:

a) Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng \(-3\), nghĩa là đồ thị hàm số đi qua điểm \(M(0; -3)\). Thay \(x=0;\ y=-3\) vào công thức hàm số \(y = 2x + b\), ta được:

          \(-3=2.0+b \Leftrightarrow -3=0+ b \)

                                  \(\Leftrightarrow b=-3\)

Vậy \(b=-3\).

b) Vì đồ thị của hàm số đã cho đi qua điểm \(A(1; 5)\) nên thay \(x=1;\ y=5\) vào công thức hàm số \(y = 2x + b\), ta được:

            \(5=2.1+b    \Leftrightarrow 5=2+b\)

                                 \(\Leftrightarrow 5-2 =b\)

                                 \(\Leftrightarrow b=3\)

Vậy \(b=3\).

Bài 24 trang 55 SGK Toán lớp 9 tập 1

Câu hỏi:

Cho hai hàm số bậc nhất y = 2x + 3k  và  y = (2m + 1)x + 2k - 3.

Tìm điều kiện đối với m và k để đồ thị của hai hàm số là:

a) Hai đường thẳng cắt nhau;

b) Hai đường thẳng song song với nhau;

c) Hai đường thằng trùng nhau.

Phương pháp:

+) Điều kiện để hàm số \(y=ax+b\) là hàm số bậc nhất là \((a \ne 0)\)

+) Hai đường thẳng: \((d)\): \(y=ax+b\), \((a \ne 0)\)  và \((d')\): \(y=a'x+b'\)  \((a' \ne 0)\):

       \((d)\) cắt \((d')  \Leftrightarrow a \ne a'\)

       \((d)\) // \((d')  \Leftrightarrow a = a'\) và \(b \ne b'\)

       \((d)\) \(\equiv\) \((d') \Leftrightarrow  a = a'\)  và \(b=b'\)

Lời giải:

 Ta có: 

      \((d_{1}) \)  \(y = 2x + 3k \Rightarrow \left\{ \matrix{
{a} = 2 \hfill \cr
{b} = 3k \hfill \cr} \right.\)

      \((d_{2})\)   \(y = \left( {2m + 1} \right)x + 2k - 3 \Rightarrow \left\{ \matrix{
{a'} = 2m + 1 \hfill \cr
{b'} = 2k - 3 \hfill \cr} \right.\)

Hai hàm số đã cho là hàm bậc nhất  khi và chỉ khi:

\(\left\{ \matrix{
a \ne 0 \hfill \cr
a' \ne 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2 \ne 0 \hfill \cr
2m + 1 \ne 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2 \ne 0 \hfill \cr
2m \ne - 1 \hfill \cr} \right. \)

\(\Leftrightarrow \left\{ \matrix{
2 \ne 0 (luôn\ đúng) \hfill \cr
m \ne \dfrac{-1}{2} \hfill \cr} \right.\)

a) Hai đường thẳng cắt nhau:

            \((d_{1}) \) cắt \((d_{2}) \Leftrightarrow a \ne a'\)

                                   \(\Leftrightarrow 2\neq 2m+1\)

                                   \(\Leftrightarrow 2-1 \neq 2m\)

                                   \(\Leftrightarrow 1 \ne 2m\)

                                   \(\Leftrightarrow m \ne \dfrac{1}{2}\)

Kết hợp điều kiện hàm bậc nhất \(m \ne  \pm \dfrac{1}{2}\).

b) Hai đường thẳng song song:

             \((d_{1})  // (d_{2}) \Leftrightarrow \left\{\begin{matrix} a=a' \\ b\neq b' \end{matrix}\right.\)

                               \(\Leftrightarrow \left\{\begin{matrix} 2=2m+1\\ 3k\neq 2k-3 \end{matrix}\right.\)

                               \(\Leftrightarrow \left\{\begin{matrix} 2-1=2m\\ 3k-2k\neq -3 \end{matrix}\right.\)

                               \(\Leftrightarrow \left\{\begin{matrix} m=\dfrac{1}{2} (thỏa\ mãn)\\ k\neq -3 \end{matrix}\right.\)

Vậy \(m=\dfrac{1}{2}\) và \( k \ne -3\) thì hai đồ thị trên song song.

c) Hai đường thẳng trùng nhau:

  \((d_{1})\) \(\equiv\)  \((d_{2}) \Leftrightarrow\) \(\left\{ \begin{matrix} a=a' \\ b=b' \end{matrix} \right.\)

                       \(\Leftrightarrow \left\{\begin{matrix} 2=2m+1\\ 3k= 2k-3 \end{matrix}\right.\)

                       \(\Leftrightarrow \left\{\begin{matrix} 2-1=2m\\ 3-2k= -3 \end{matrix}\right.\)

                       \(\Leftrightarrow \left\{\begin{matrix} 2m=1 \\ k=-3 \end{matrix}\right.\)

                       \(\Leftrightarrow \left\{\begin{matrix} m=\dfrac{1}{2}(tm) \\ k= -3 \end{matrix}\right.\)

Vậy \(m=\dfrac{1}{2}\) và \(k=-3\) thì đồ thị hai hàm số trên trùng nhau.

Bài 25 trang 55 SGK Toán lớp 9 tập 1

Câu hỏi:

a) Vẽ đồ thị của các hàm số sau trên cùng một mặt phẳng tọa độ: 

\(y = \dfrac{2}{3}x + 2\);                                       \(y =  - \dfrac{3}{2}x + 2\)

b) Một đường thẳng song song với trục hoành \(Ox\), cắt trục tung \(Oy\) tại điểm có tung độ bằng \(1\), cắt các đường thẳng \(y = \dfrac{2}{3}x + 2\) và \(y =  - \dfrac{3}{2}x + 2\) theo thứ tự tại hai điểm \(M\) và \(N\). Tìm tọa độ của hai điểm \(M\) và \(N\).

Lời giải:

a) Hàm số \(y = \dfrac{2}{3}x + 2\)

Cho \(x= 0 \Rightarrow y = \dfrac{2}{3}. 0+ 2=0+2=2 \Rightarrow A(0; 2)\)

Cho \(y= 0 \Rightarrow 0 = \dfrac{2}{3}. x+ 2 \Rightarrow x=-3 \Rightarrow B(-3; 0)\)

Đường thẳng đi qua hai điểm \(A,\ B\) là đồ thị của hàm số \(y = \dfrac{2}{3}x + 2\).

+) Hàm số \(y =- \dfrac{3}{2}x + 2\) 

Cho \(x= 0 \Rightarrow y = -\dfrac{3}{2}. 0+ 2=0+2=2 \Rightarrow A(0; 2)\)

Cho \(y=0 \Rightarrow y = -\dfrac{3}{2}. x+ 2 \Rightarrow x= \dfrac{4}{3}  \Rightarrow C {\left(\dfrac{4}{3}; 0 \right)}\)

Đường thẳng đi qua hai điểm \(A,\ C\) là đồ thị của hàm số \(y = -\dfrac{3}{2}x + 2\).

b) Đường thẳng song song với trục \(Ox\) cắt trục \(Oy\) tại điểm có tung độ \(1\) có dạng: \(y=1\).

Vì \(M\) là giao của đường thẳng \(y=\dfrac{2}{3}x+2\) và \(y=1\) nên hoành độ của \(M\) là nghiệm của phương trình: 

\(\dfrac{2}{3}x+2=1\)

\(\Leftrightarrow \dfrac{2}{3}x=1-2\)

\(\Leftrightarrow \dfrac{2}{3}x=-1\)

\(\Leftrightarrow x=-\dfrac{3}{2}\)

Do đó tọa độ \(M\) là: \(M{\left( -\dfrac{3}{2}; 1 \right)}\).

Vì \(N\) là giao của đường thẳng \(y=-\dfrac{3}{2}x+2\) và \(y=1\) nên hoành độ của \(N\) là nghiệm của phương trình:

\(-\dfrac{3}{2}x+2=1\)

\(\Leftrightarrow -\dfrac{3}{2}x=1-2\)

\(\Leftrightarrow -\dfrac{3}{2}x=-1\)

\(\Leftrightarrow x=\dfrac{2}{3}\)

Do đó tọa độ \(N\) là: \(N{\left( \dfrac{2}{3}; 1 \right)}\).

Bài 26 trang 55 SGK Toán lớp 9 tập 1

Câu hỏi:

Cho hàm số bậc nhất \(y = ax - 4\) (1). Hãy xác định hệ số \(a\) trong mỗi trường hợp sau:

a) Đồ thị của hàm số \((1)\) cắt đường thẳng \(y = 2x - 1\) tại điểm có hoành độ bằng \(2\).

b) Đồ thị của hàm số \((1)\) cắt đường thẳng \(y = -3x + 2\) tại điểm có tung độ bằng \(5\). 

Lời giải:

a) Xét phương trình hoành độ giao điểm của hai đường thẳng \(y=ax-4\) và \(y=2x-1\) là: \(ax-4=2x-1\).

Đồ thị hàm số \(y = ax – 4\) cắt đường thẳng \(y = 2x – 1\) tại điểm có hoành độ bằng 2 nên thay \(x = 2\) vào phương trình hoành độ giao điểm trên, ta có:

\(a.2-4=2.2-1\)

\(\Leftrightarrow 2a=4-1+4\)

\(\Leftrightarrow a=\dfrac{7}{2}\).

b) Ta có:  \((1)\) \(y = ax - 4\)

              \((2)\) \(y = -3x +2 \)

Đồ thị hàm số \(y = ax – 4\) cắt đường thẳng \(y = -3x + 2\) tại điểm \(A\) có tung độ bằng \(5\) nên đường thẳng \(y = -3x + 2\) đi qua điểm có tung độ bằng \(5.\)

Thay tung độ giao điểm vào phương trình \((2)\), ta được:

\(5=-3.x+2\)

\( \Leftrightarrow 5-2 = -3x\)

\(\Leftrightarrow 3=-3x\)

\(\Leftrightarrow x=-1\)

Do đó hoành độ giao điểm là \(x=-1\). Thay \(x=-1,\ y=5\) vào phương trình \((1)\) , ta được:

\(5=a.(-1) - 4\)

\(\Leftrightarrow 5+4=-a\)

\(\Leftrightarrow -a=9\)

\(\Leftrightarrow a=-9\)

Vậy \(a=-9\). 

Sachbaitap.com