Bài 23.8 trang 55 Sách bài tập (SBT) Vật lí 10Một quả lựu đạn, đang bay theo phương ngang với vận tốc 10 m/s, bị nổ , và tách thành hai mảnh có trọng lượng 10 N và 15 N. Sau khi nổ, mảnh to vẫn chuyển động theo phương ngang với vận tốc 25 m/s. Lấy g ~ 10 m/s2. Xác định vận tốc và phương chuyển động của mảnh nhỏ. Một quả lựu đạn, đang bay theo phương ngang với vận tốc 10 m/s, bị nổ , và tách thành hai mảnh có trọng lượng 10 N và 15 N. Sau khi nổ, mảnh to vẫn chuyển động theo phương ngang với vận tốc 25 m/s. Lấy g ~ 10 m/s2. Xác định vận tốc và phương chuyển động của mảnh nhỏ. Hướng dẫn trả lời: Hệ vật gồm hai mảnh của quả lựu đạn là hệ cô lập, do không chịu tác dụng của ngoại lực, nên động lượng của hệ vật bảo toàn. Trước khi nổ, hai mảnh của quả lựu đạn đều chuyển động với vận tốc v0, nên hệ vật có tổng động lượng : p0 = (m1 + m2)v0. Sau khi nổ, hệ vật có tổng động lượng : p = m1v1 + m2v2 Áp dụng định luật bảo toàn động lượng cho hệ vật, ta có p = p0 => m1v1 + m2v2 = (m1 + m2)v0 suy ra: \({v_1} = {{({m_1} + {m_2}){v_0} - {m_2}{v_2}} \over {{m_1}}}\) Thay số, ta tìm được : \({v_1} = {{({m_1} + {m_2}){v_0} - {m_2}{v_2}} \over {{m_1}}} = {{(1,0 + 1,5).10 - 1,5.25} \over {1,0}} = - 12,5(m/s)\) Dấu (-) chứng tỏ sau khi nổ, vận tốc v1| của mảnh nhỏ ngược hướng với vận tốc ban đầu v0 của quả lựu đạn. Sachbaitap.com
Xem lời giải SGK - Vật lí 10 - Xem ngay >> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 23: Động Lượng. Định Luật Bảo Toàn Động Lượng
|
Một máy bay khối lượng 3000 kg khi cất cánh phải mất 80 s để bay lên tới độ cao 1500 m. Lấy g = 9,8 m/s2. Xác định công suất của động cơ máy bay. Cho rằng công mà động cơ máy bay sinh ra lúc này chủ yếu là để nâng máy bay lên cao.
Một người đẩy chiếc hòm khối lượng 150 kg dịch chuyển một đoạn 5 m trên mặt sàn ngang. Hệ số ma sát của mặt sàn là 0,1. Lấy g ≈ 10 m/s2. Xác định công tối thiểu mà người này phải thực hiện.
Một cần cẩu nâng một vật khối lượng 500 kg lên cao với gia tốc 0,2 m/s2 trong khoảng thời gian 5 s. Lấy g = 9,8 m/s2. Xác định công và công suất của lực nâng do cần cẩu thực hiện trong khoảng thời gian này. Bỏ qua sức cản của không khí.
Muốn cất cánh rời khỏi mặt đất, một máy bay trọng lượng 10000 N cần phải có vận tốc 90 km/h. Cho biết trước khi cất cánh, máy bay chuyển động nhanh dần đều trên đoạn đường băng dài 100 m và có hệ số ma sát là 0,2. Lấy g ≈ 9,8 m/s2. Xác định công suất tối thiểu của động cơ máy bay để đảm bảo cho máy bay có thể cất cánh rời khỏi mặt đất.