Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 2.51 trang 104 Sách bài tập (SBT) Toán Hình học 10

Tam giác ABC có BC

Tam giác ABC có BC = 12, CA = 13, trung tuyến AM = 8

a) Tính diện tích tam giác ABC;

b) Tính góc B.

Gợi ý làm bài

(h.2.33)

Theo công thức Hê – rông ta có:

\({S_{AMC}} = \sqrt {{{27} \over 2}\left( {{{27} \over 2} - 13} \right)\left( {{{27} \over 2} - 6} \right)\left( {{{27} \over 2} - 8} \right)} \)

\( = {{9\sqrt {55} } \over 4}\)

\({S_{ABC}} = 2{S_{AMC}} = {{9\sqrt {55} } \over 2}\)

Mặt khác ta có \(A{M^2} = {{{b^2} + {c^2}} \over 2} - {{{a^2}} \over 4}\) hay \(2A{M^2} = {b^2} + {c^2} - {{{a^2}} \over 2}\)

Do đó 

\(\eqalign{
& A{B^2} = {c^2} = 2A{M^2} - {b^2} + {{{a^2}} \over 2} \cr
& = 2.64 - 169 + 72 = 31 \cr} \)

\( =  > c = \sqrt {31} \)

\(\eqalign{
& \cos B = {{{a^2} + {c^2} - {b^2}} \over {2ac}} = {{144 + 31 - 169} \over {24\sqrt {31} }} \cr
& \approx 0,045 = > \widehat B \approx {87^0}25' \cr} \)

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.