Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 26 trang 78 Sách bài tập (SBT) Toán Đại số 10

Giải phương trình

Giải phương trình 

\(\root 3 \of {{1 \over 2} + x}  + \sqrt {{1 \over 2} - x}  = 1\)

Gợi ý làm bài

Đặt \(u = \root 3 \of {{1 \over 2} + x} ,v = \sqrt {{1 \over 2} - x} \)   điều kiện \(v \ge 0\)

Ta được hệ phương trình

\(\left\{ \matrix{
u + v = 1 \hfill \cr
{u^3} + {v^2} = 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
v = 1 - u(1) \hfill \cr
{u^3} + {v^2} - 2u = 0(2) \hfill \cr} \right.\)

(2) \( \Leftrightarrow u({u^2} + u - 2) = 0\)

Phương trình cuối có 3 nghiệm \({u_1} = 0,{u_2} = 1,{u_3} = 2\)

+Với u = 0 ta có v = 1 => \(x =  - {1 \over 2}\)

+Với u =1 ta có v = 0  => \(x = {1 \over 2}\)

+Với u = -2 ta có v = 3 => \(x =  - {{17} \over 2}\)

Vậy phương trình đã cho có ba nghiệm 

\(x =  - {1 \over 2}\), \(x = {1 \over 2}\) và \(x =  - {{17} \over 2}\)

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.