Bài 34 trang 43 SBT Hình học 10 Nâng caoGiải bài tập Bài 34 trang 43 SBT Hình học 10 Nâng cao Cho tam giác \(ABC\) ngoại tiếp đường tròn \((I)\) và \((J)\) là đường tròn bàng tiếp góc \(A\)(*) của tam giác. Chứng minh rằng trục đẳng phương của hai đường tròn đó đi qua trung điểm của cạnh \(BC.\) Giải Đặt tên các tiếp điểm của hai đường tròn như hình 40.
Ta có \(AR=AS\) và \(AR+AS=(AB+BR)+(AC+CS)\) \(=(AB+BH)+(AC+CH)\) \(=AB+BC+AC=2p.\) Vậy \(AR=AS=p,\) suy ra \(c+BH=p\) hay \(BH=p-c.\) Ta cũng có \(AP=AQ, BP=BK, CK=CQ\) nên \(c+CK=b+BK.\) Do \((c+CK)+(b+BK)\)\(=a+b+c=2p\) nên \(c+CK=p\) hay \(CK=p-c=BH.\) Gọi \(M\) là trung điểm của \(BC,\) từ \(BH=CK\) suy ra \(MH=MK\) hay \({P_{M/(I)}} = M{K^2} = M{H^2} = {P_{M/(J)}}.\) Vậy \(M\) thuộc trục đẳng phương của hai đường tròn \((I)\) và \((J)\). Sachbaitap.com
Xem thêm tại đây:
Bài 2. Tích vô hướng của hai vec tơ
|