Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.46 trang 164 Sách bài tập (SBT) Hình học 11

Cho hình lập phương ABCD.A’B’C’D’. Hãy tính góc của các cặp đường thẳng sau đây: a) AB’ và BC’ b) AC’ và CD’

Cho hình lập phương ABCD.A’B’C’D’. Hãy tính góc của các cặp đường thẳng sau đây:

a) AB’ và BC’

b) AC’ và CD’

Giải:

a) Ta có \(AB'\parallel DC'\). Gọi  là góc giữa AB’và BC’, khi đó \(\alpha  = \widehat {DC'B}\).

Vì tam giác BC’D đều nên \(\alpha  = {60^0}\)

b) Gọi \(\beta \) là góc giữa AC’ và CD’.

Vì CD’⊥C’D và CD’⊥AD

( do AD⊥(CDD’C’)

Ta suy ra CD’⊥(ADC’B’)

Vậy CD’⊥AC’ hay \(\beta  = {90^0}\)

Chú ý.  Ta có thể chứng minh \(\beta  = {90^0}\) bằng cách khác như sau:

Gọi I và K lần lượt là trung điểm của các cạnh BC và A’D’. Ta có \(IK\parallel C{\rm{D}}'\). Dễ dàng chứng minh được AIC’K là một hình bình hành có bốn cạnh bằng nhau và đó là một hình thoi. Vậy AC’⊥IK hay AC’⊥CD’ và góc \(\beta  = {90^0}\).

Sachbaitap.com

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.