Bài 36 trang 61 Sách bài tập Hình học lớp 12 Nâng caoTìm hình nón có thể tích lớn nhất Tìm hình nón có thể tích lớn nhất khi diện tích toàn phần của nó bằng diện tích hình tròn bán kính a cho trước. Giải
Kí hiệu bán kính đáy và chiều cao hình nón lần lượt là x và y (x, y > 0). Khi đó, diện tích toàn phần của hình nón là \(\pi x\sqrt {{x^2} + {y^2}} + \pi {x^2},\) Theo gia thiết ta có \(\eqalign{ & \pi x\sqrt {{x^2} + {y^2}} + \pi {x^2} = \pi {a^2} \cr & \Leftrightarrow x\sqrt {{x^2} + {y^2}} + {x^2} = {a^2} \cr & \cr} \) \( \Leftrightarrow x\sqrt {{x^2} + {y^2}} = {a^2} - {x^2}\) (điều kiện x < a) \(\eqalign{ & \Leftrightarrow {x^2}({x^2} + {y^2}) = {a^4} + {x^4} - 2{a^2}{x^2} \cr & \Leftrightarrow {x^2}{y^2} = {a^4} - 2{a^2}{x^2} \Leftrightarrow {x^2} = {{{a^4}} \over {{y^2} + 2{a^2}}} \cr} \) Khi đó thể tích khối nón là \(V = {1 \over 3}\pi {{{a^4}} \over {{y^2} + 2{a^2}}}.y = {{\pi {a^4}} \over 3}.{y \over {{y^2} + 2{a^2}}}.\) Từ đó V đạt giá trị lớn nhất khi và chỉ khi \({{{y^2} + 2{a^2}} \over y}\) đạt giá trị nhỏ nhất. Ta có \({{{y^2} + 2{a^2}} \over y} = y + {{2{a^2}} \over y} \ge 2\sqrt {y.{{2{a^2}} \over y}} = 2\sqrt 2 a.\) Vậy V đạt giá trị lớn nhất khi và chỉ khi \(y = {{2{a^2}} \over y},\) tức là \(y = a\sqrt 2 \), lúc đó \(x = {a \over 2}.\) Sachbaitap.com
Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 4. Mặt nón, hình nón và khối nón
|
Một hình nón có bán kính R và chiều cao bằng 4R.