Bài 39 trang 118 Sách bài tập (SBT) Toán Đại số 10Một hộ nông dân trồng đậu và cà trên diện tích 8a Một hộ nông dân trồng đậu và cà trên diện tích 8a. Nếu trồng đậu thì cần 20 công và thu 3 000 000 đồng trên một a, nếu trồng cà thì cần 30 công và thu 40 000 000 đồng trên một a. Hỏi cần trồng mỗi loại cây trên diện tích là bao nhiêu để thu được nhiều tiền nhất khi tổng số công không quá 180? Gợi ý làm bài Gọi x là diện tích trồng đậu, y là diện tích trồng cà, (đơn vị a = 100 \({m^2}\) ), điều kiện \(x \ge 0,y \ge 0\) , ta có \(x + y \le 8\) Số công cần dùng là \(20x + 30y \le 180\) hay \(20 + 3y \le 18\) Số tiền thu được là \(F = 3000000x + 4000000y\) (đồng) Hay F = 3x + 4y (đồng) Ta cần tìm x, y thỏa mãn hệ bất phương trình \(\left\{ \matrix{ Sao cho F = 3x + 4y đạt giá trị lớn nhất. Biểu diễn tập nghiệm của (H) ta được miền tứ giác OABC với A(0;6), B(6;2), C(8;0) và O(0;0) (h.46). Xét giá trị của F tại các đỉnh O, A, B, C và so sánh ta suy ra x = 6, y = 2 (tọa độ điểm B) là diện tích cần trồng mỗi loại để thu được nhiều tiền nhất là F = 26 (triệu đồng). Đáp số: Trồng 6a đậu, 2a cà, thu hoạch 26 000 000 đồng. Sachbaitap.net
Xem lời giải SGK - Toán 10 - Xem ngay >> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 4: Bất phương trình bậc nhất hai ẩn
|