Bài 5.8 trang 220 sách bài tập (SBT) - Giải tích 12Tìm giá trị lớn nhất và nhỏ nhất của các hàm số sau trên các khoảng, đoạn tương ứng: Tìm giá trị lớn nhất và nhỏ nhất của các hàm số sau trên các khoảng, đoạn tương ứng: a) g(x) = |x3 + 3x2 – 72x + 90| trên đoạn [-5; 5] b) f(x) = x4 – 4x2 + 1 trên đoạn [-1; 2] c) f(x) = x – ln x + 3 trên khoảng \((0; + \infty )\) Hướng dẫn làm bài a) Xét hàm số \(f(x) = {x^3} + 3{x^2} - 72x + 90\) trên đoạn [-5; 5] \(f'(x) = 3{x^2} + 6x - 72;f'(x) = 0\Leftrightarrow \left[ {\matrix{{x = 4} \cr {x = - 6 \notin {\rm{[}} - 5;5]} \cr} } \right.\) \(f( - 5) = 400;f(5) = - 70;f(4) = - 86\) Ngoài ra, f(x) liên tục trên đoạn [-5; 5] và \(f( - 5).f(5) < 0\) nên tồn tại \({x_0} \in ( - 5;5)\) sao cho \(f({x_0}) = 0\) Ta có \(g(x) = |f(x)| \ge 0\) và \(g({x_0}) = |f({x_0})| = 0;g( - 5) = |400| = 400\); \(g(5) = |-70| = 70 ; g(4) = |f(4)| = |-86| = 86\) Vậy \(\mathop {\min g(x)}\limits_{{\rm{[}} - 5;5]} = g({x_0}) = 0;\mathop {{\rm{max }}g(x)}\limits_{{\rm{[}} - 5;5]} = g( - 5) = 400\) b) \(\mathop {\min f(x)}\limits_{{\rm{[}} - 1;2]} = f(\sqrt 2 ) = - 3;\mathop {{\rm{max f}}(x)}\limits_{{\rm{[}} - 1;2]} = f(2) = f(0) = 1\) c) \(\mathop {\min f(x)}\limits_{(0; + \infty )} = f(1) = 4\) . Không có giá trị lớn nhất. Sachbaitap.com
Xem lời giải SGK - Toán 12 - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
BÀI TẬP ÔN TẬP CUỐI NĂM - GIẢI TÍCH 12
|
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
Cho a, b, x là những số dương. Đơn giản các biểu thức sau: