Bài 7 trang 171 Sách bài tập (SBT) Đại số và giải tích 11Chứng minh rằng Chứng minh rằng hàm số \(f\left( x \right) = \cos {1 \over x}\) không có giới hạn khi \(x \to 0\) Giải: Hướng dẫn : Chọn hai dãy số có số hạng tổng quát là \({a_n} = {1 \over {2n\pi }}\) và \({b_n} = {1 \over {\left( {2n + 1} \right)\pi }}\). Tính và so sánh \(\lim f\left( {{a_n}} \right)\) và \(\lim f\left( {{b_n}} \right)\) để kết luận về giới hạn của \(f\left( x \right)\) khi \(x \to 0\)
Xem lời giải SGK - Toán 11 - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Ôn tập chương IV - Giới hạn - SBT Toán 11
|
Xác định một hàm số y = f(x) thoả mãn đồng thời các điều kiện sau :