Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 108 trang 23 Sách Bài Tập (SBT) Toán 9 Tập 1

Rút gọn C

Cho biểu thức:

\(C = \left( {{{\sqrt x } \over {3 + \sqrt x }} + {{x + 9} \over {9 - x}}} \right):\left( {{{3\sqrt x  + 1} \over {x - 3\sqrt x }} - {1 \over {\sqrt x }}} \right)\) với \(x > 0\) và \(x \ne 9\)

a)      Rút gọn C    

b)      Tìm x sao cho C < -1.

Gợi ý làm bài:

a) Ta có:

\(\eqalign{
& C = \left( {{{\sqrt x } \over {3 + \sqrt x }} + {{x + 9} \over {9 - x}}} \right):\left( {{{3\sqrt x + 1} \over {x - 3\sqrt x }} - {1 \over {\sqrt x }}} \right) \cr
& = \left[ {{{\sqrt x } \over {3 + \sqrt x }} + {{x + 9} \over {\left( {3 + \sqrt x } \right)\left( {3 - \sqrt x } \right)}}} \right]:\left[ {{{3\sqrt x + 1} \over {\sqrt x \left( {\sqrt x - 3} \right)}} - {1 \over {\sqrt x }}} \right] \cr
& = {{\sqrt x \left( {3 - \sqrt x } \right) + x + 9} \over {\left( {3 + \sqrt x } \right)\left( {3 - \sqrt x } \right)}}:{{3\sqrt x + 1 - \left( {\sqrt x - 3} \right)} \over {\sqrt x \left( {\sqrt x - 3} \right)}} \cr
& = {{3\sqrt x - x + x + 9} \over {\left( {3 + \sqrt x } \right)\left( {3 - \sqrt x } \right)}}:{{2\sqrt x + 4} \over {\sqrt x \left( {\sqrt x - 3} \right)}} \cr
& = {{3\sqrt x + 9} \over {\left( {3 + \sqrt x } \right)\left( {3 - \sqrt x } \right)}}.{{\sqrt x \left( {\sqrt x - 3} \right)} \over {2\sqrt x + 4}} \cr
& = {{3\left( {\sqrt x + 3} \right)} \over {\left( {3 + \sqrt x } \right)\left( {3 - \sqrt x } \right)}}.{{ - \sqrt x \left( {3 - \sqrt x } \right)} \over {2\sqrt x + 4}} \cr} \)

\(= {{ - 3\sqrt x } \over {2\sqrt x  + 4}}\) (với \(x > 0\) và \(x \ne 9\)

b) Với \(C <  - 1\) ta có:

\({{ - 3\sqrt x } \over {2\sqrt x  + 4}} <  - 1 \Leftrightarrow {{ - 3\sqrt x } \over {2\sqrt x  + 4}} + 1 < 0\)

\(\Leftrightarrow {{ - 3\sqrt x  + 2\sqrt x  + 4} \over {2\sqrt x  + 4}} < 0 \Leftrightarrow {{4 - \sqrt x } \over {2\sqrt x  + 4}} < 0\)

Vì \(x > 0\) nên \(\sqrt x  > 0\)

Khi đó: \(2\sqrt x  + 4 > 0\)

Suy ra: \(4 - \sqrt x  < 0 \Leftrightarrow \sqrt x  > 4 \Leftrightarrow x > 16\)

Vậy với \(x > 16\) thì C < -1.

Sachbaitap.com

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.