Câu 12 trang 138 Sách Bài Tập (SBT) Toán lớp 7 tập 1Tính góc BIC. Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau ở I. Tính \(\widehat {BIC}\) biết rằng: a) \({\rm{}}\widehat B = 80^\circ ,\widehat C = 40^\circ \) b) \(\widehat A = 80^\circ \) c) \(\widehat A = m^\circ \) Giải a) Ta có \(\widehat {{B_1}} = {1 \over 2}\widehat {ABC} = {1 \over 2}.80^\circ = 40^\circ \) (vì BD là tia phân giác của \(\widehat {ABC}\)) \(\widehat {{C_1}} = {1 \over 2}\widehat {ACB} = {1 \over 2}.40^\circ = 20^\circ \) (vì CE là tia phân giác của \(\widehat {ACB}\)) Trong ∆IBC, ta có: \(\widehat {BIC} + \widehat {{B_1}} + \widehat {{C_1}} = 180^\circ \) (tổng 3 góc trong tam giác) \(\widehat {BIC} = 180^\circ - \left( {\widehat {\widehat {{B_1}} + {C_1}}} \right) = 180^\circ - \left( {40^\circ + 20^\circ } \right) = 120^\circ \) b) Ta có: \(\widehat {{B_1}} = {1 \over 2}\widehat B\) (vì BD là tia phân giác \(\widehat B\)) \(\widehat {{C_1}} = {1 \over 2}\widehat C\) (vì CE là tia phân giác \(\widehat C\)) Trong ∆ABC, ta có: \(\widehat A + \widehat B + \widehat C = 180^\circ \) (tổng ba góc trong tam giác) Suy ra \(\widehat B + \widehat C = 180^\circ - \widehat A = 180^\circ - 80^\circ = 100^\circ \) Trong ∆IBC, ta có: \(\widehat {BIC} + \widehat {{B_1}} + \widehat {{C_1}} = 180^\circ \) Vậy \(\widehat {BIC} = 180^\circ - \left( {\widehat {{B_1}} + \widehat {{C_1}}} \right) = 180^\circ - {{\widehat B + \widehat C} \over 2} = 180^\circ - {{100^\circ } \over 2} = 130^\circ \) c) Ta có: \(\widehat B + \widehat C = 180 - m^\circ \) Vậy \(\widehat {BIC} = 180^\circ - {{180^\circ - m^\circ } \over 2} = 180^\circ - 90^\circ + {{m^\circ } \over 2} = 90^\circ + {{m^\circ } \over 2}\) Sachbaitap.com
Xem lời giải SGK - Toán 7 - Xem ngay >> Học trực tuyến lớp 7 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 1: Tổng ba góc của một tam giác
|
Tính góc ACB bằng cách xem nó là góc ngoài của một tam giác.