Câu 1.34 trang 12 SBT Đại số 10 Nâng caoGiải bài tập Câu 1.34 trang 12 SBT Đại số 10 Nâng cao Chứng minh rằng \(\sqrt 6 \) là số vô tỉ. Giải: Chứng minh bằng phản chứng. Giả sử \(\sqrt 6 = {a \over b}\) là một số hữu tỉ trong đó a, b là hai số nguyên dương và \((a, b) = 1\). Suy ra \(6{b^2} = {a^2}\) . Vậy \({a^2}\) chia hết cho 2 và chia hết cho 3 tức là a chia hết cho 6. Đặt \(a = 6k\left( {k \in N^*} \right)\) . Thay vào ta được \(6{b^2} = 36{k^2}\) hay \({b^2} = 6{k^2}\) . Lí luận tương tự như trên ta suy ra b chia hết cho 6. Vậy a và b có ước chung là 6. Điều này mâu thuẫn với giả thiết a, b không có ước chung lớn hơn 1. Sachbaitap.com
Xem thêm tại đây:
Bài 3. Tập hợp và các phép toán trên tập hợp
|