Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 22 trang 211 sách bài tập Giải tích 12 Nâng cao

Tìm số phức z sao cho

Tìm số phức z sao cho \(\left| {{{z + 3i} \over {z + i}}} \right| = 1\)\(z + 1\) có một acgumen bằng \( - {\pi  \over 6}\)

Giải

Điều kiện \(\left| {{{z + 3i} \over {z + i}}} \right| = 1\) nói rằng phần ảo của z bằng -2. Điều kiện \(z + 1\) có một acgumen bằng \( - {\pi  \over 6}\)nói rằng \(z + 1 = l\left( {\sqrt 3  - i} \right)\) với \(l > 0\).

Vậy \(z + 1 = 2\left( {\sqrt 3  + i} \right),\) tức là \(z = 2\sqrt 3  - 1 - 2i.\)

Sachbaitap.com

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Xem thêm tại đây: Ôn tập cuối năm Giải tích