Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 2.68 trang 71 sách bài tập Đại số và Giải tích 11 Nâng cao

Xác định n để

Xác định n để khai triển của \({\left( {x + 2} \right)^n}\) (theo lũy thừa của x), hệ số của số hạng thứ 10 lớn hơn hệ số của số hạng thứ 9 và hệ số của số hạng thứ 11.

Giải

Khai triển \({\left( {x + 2} \right)^n}\) theo lũy thừa giảm của x là

                    \({\left( {x + 2} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{x^{n - k}}{2^k}} \)

Do đó ta phải có \(C_n^9{2^9} > C_n^8{2^8}\) và \(C_n^{9}{2^{9}} > C_n^{10}{2^{10}}\) hay \(2\left( {n - 8} \right) > 0\) và \(10 > 2\left( {n - 9} \right).\)

Từ đó 12,5 < n< 14. Suy ra n = 13.

sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.