Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 28 trang 55 Sách bài tập (SBT) Toán 9 tập 2

Với những giá trị nào của x thì giá trị của hai biểu thức bằng nhau.

Với những giá trị nào của x thì giá trị của hai biểu thức bằng nhau:

a) \({x^2} + 2 + 2\sqrt 2 \) và \(2\left( {1 + \sqrt 2 } \right)x\)

b) \(\sqrt 3 {x^2} + 2x - 1\) và \(2\sqrt 3 x + 3\)

c) \( - 2\sqrt 2 x - 1\) và \(\sqrt 2 {x^2} + 2x + 3\)

d) \({x^2} - 2\sqrt 3 x - \sqrt 3 \) và \(2{x^2} + 2x + \sqrt 3 \)

e) \(\sqrt 3 {x^2} + 2\sqrt 5 x - 3\sqrt 3 \) và \( - {x^2} - 2\sqrt 3 x + 2\sqrt 5  + 1\)?

Giải

a)

\(\eqalign{
& {x^2} + 2 + 2\sqrt 2 = 2\left( {1 + \sqrt 2 } \right)x \cr
& \Leftrightarrow {x^2} - 2\left( {1 + \sqrt 2 } \right)x + 2 + 2\sqrt 2 = 0 \cr
& \Delta ' = {\left[ { - \left( {1 + \sqrt 2 } \right)} \right]^2} - 1.\left( {2 + 2\sqrt 2 } \right) \cr
& = 1 + 2\sqrt 2 + 2 - 2 - 2\sqrt 2 = 1 > 0 \cr
& \sqrt {\Delta '} = \sqrt 1 = 1 \cr
& {x_1} = {{1 + \sqrt 2 + 1} \over 1} = 2 + \sqrt 2 \cr
& {x_2} = {{1 + \sqrt 2 - 1} \over 1} = \sqrt 2 \cr} \)

Vậy với \(x = 2 + \sqrt 2 \) hoặc \(x = \sqrt 2 \) thì hai biểu thức bằng nhau.

b)

\(\eqalign{
& \sqrt 3 {x^2} + 2x - 1 = 2\sqrt 3 x + 3 \cr
& \Leftrightarrow \sqrt 3 {x^2} + \left( {2 - 2\sqrt 3 } \right)x - 4 = 0 \cr
& \Leftrightarrow \sqrt 3 {x^2} + 2\left( {1 - \sqrt 3 } \right)x - 4 = 0 \cr
& \Delta ' = {\left( {1 - \sqrt 3 } \right)^2} - \sqrt 3 \left( { - 4} \right) \cr
& = 1 - 2\sqrt 3 + 3 + 4\sqrt 3 \cr
& = 1 + 2\sqrt 3 + 3 = {\left( {1 + \sqrt 3 } \right)^2} > 0 \cr
& \sqrt {\Delta '} = \sqrt {{{\left( {1 + \sqrt 3 } \right)}^2}} = 1 + \sqrt 3 \cr
& {x_1} = {{\sqrt 3 - 1 + 1 + \sqrt 3 } \over {\sqrt 3 }} = {{2\sqrt 3 } \over {\sqrt 3 }} = 2 \cr
& {x_2} = {{\sqrt 3 - 1 - 1 - \sqrt 3 } \over {\sqrt 3 }} = {{ - 2} \over {\sqrt 3 }} = {{ - 2\sqrt 3 } \over 3} \cr} \)

Vậy với x = 2 hoặc \(x = {{ - 2\sqrt 3 } \over 3}\) thì hai biểu thức đó bằng nhau.

c)

\(\eqalign{
& - 2\sqrt 2 x - 1 = \sqrt 2 {x^2} + 2x + 3 \cr
& \Leftrightarrow \sqrt 2 {x^2} + \left( {2 + 2\sqrt 2 } \right)x + 4 = 0 \cr
& \Leftrightarrow \sqrt 2 {x^2} + 2\left( {1 + \sqrt 2 } \right)x + 4 = 0 \cr
& \Delta ' = {\left( {1 + \sqrt 2 } \right)^2} - \sqrt 2 .4 \cr
& = 1 + 2\sqrt 2 + 2 - 4\sqrt 2 \cr
& = 1 - 2\sqrt 2 + 2 = {\left( {\sqrt 2 - 1} \right)^2} > 0 \cr
& \sqrt {\Delta '} = \sqrt {{{\left( {\sqrt 2 - 1} \right)}^2}} = \sqrt 2 - 1 \cr
& {x_1} = {{ - 1 - \sqrt 2 + \sqrt 2 - 1} \over {\sqrt 2 }} = {{ - 2} \over {\sqrt 2 }} = - \sqrt 2 \cr
& {x_2} = {{ - 1 - \sqrt 2 - \sqrt 2 + 1} \over {\sqrt 2 }} = {{ - 2\sqrt 2 } \over {\sqrt 2 }} = - 2 \cr} \)

Vậy với \(x =  - \sqrt 2 \) hoặc \(x =  - 2\) thì hai biểu thức bằng nhau.

d)

\(\eqalign{
& {x^2} - 2\sqrt 3 x - \sqrt 3 = 2{x^2} + 2x + \sqrt 3 \cr
& \Leftrightarrow {x^2} + \left( {2 + 2\sqrt 3 } \right)x + 2\sqrt 3 = 0 \cr
& \Leftrightarrow {x^2} + 2\left( {1 + \sqrt 3 } \right)x + 2\sqrt 3 = 0 \cr
& \Delta ' = {\left( {1 + \sqrt 3 } \right)^2} - 1.2\sqrt 3 \cr
& = 1 + 2\sqrt 3 + 3 - 2\sqrt 3 = 4 > 0 \cr
& \sqrt {\Delta '} = \sqrt 4 = 2 \cr
& {x_1} = {{ - 1 - \sqrt 3 + 2} \over 1} = 1 - \sqrt 3 \cr
& {x_2} = {{ - 1 - \sqrt 3 - 2} \over 1} = - 3 - \sqrt 3 \cr} \)

Vậy với \(x = 1 - \sqrt 3 \) hoặc \(x =  - 3 - \sqrt 3 \) thì hai biểu thức bằng nhau.

e)

\(\eqalign{
& \sqrt 3 {x^2} + 2\sqrt 5 x - 3\sqrt 3 = - {x^2} - 2\sqrt 3 x + 2\sqrt 5 + 1 \cr
& \Leftrightarrow \left( {\sqrt 3 + 1} \right){x^2} + \left( {2\sqrt 5 + 2\sqrt 3 } \right)x - 3\sqrt 3 - 2\sqrt 5 - 1 = 0 \cr
& \Leftrightarrow \left( {\sqrt 3 + 1} \right){x^2} + 2\left( {\sqrt 5 + \sqrt 3 } \right)x - 3\sqrt 3 - 2\sqrt 5 - 1 = 0 \cr
& \Delta ' = {\left( {\sqrt 5 + \sqrt 3 } \right)^2} - \left( {\sqrt 3 + 1} \right)\left( { - 3\sqrt 3 - 2\sqrt 5 - 1} \right) \cr
& = 5 + 2\sqrt {15} + 3 + 9 + 2\sqrt {15} + \sqrt 3 + 3\sqrt 3 + 2\sqrt 5 + 1 \cr
& = 18 + 4\sqrt 3 + 2\sqrt 5 + 4\sqrt {15} \cr
& = 1 + 12 + 5 + 2.2\sqrt 3 + 2\sqrt 5 + 2.2\sqrt 3 .\sqrt 5 \cr
& = 1 + {\left( {2\sqrt 3 } \right)^2} + {\left( {\sqrt 5 } \right)^2} + 2.1.2\sqrt 3 + 2.1.\sqrt 5 + 2.2\sqrt 3 .\sqrt 5 \cr
& = {\left( {1 + 2\sqrt 3 + \sqrt 5 } \right)^2} > 0 \cr
& \sqrt {\Delta '} = \sqrt {{{\left( {1 + 2\sqrt 3 + \sqrt 5 } \right)}^2}} = 1 + 2\sqrt 3 + \sqrt 5 \cr
& {x_1} = {{ - \left( {\sqrt 5 + \sqrt 3 } \right) + 1 + 2\sqrt 3 + \sqrt 5 } \over {\sqrt 3 + 1}} = {{1 + \sqrt 3 } \over {\sqrt 3 + 1}} = 1 \cr
& {x_2} = {{ - \left( {\sqrt 5 + \sqrt 3 } \right) - 1 - 2\sqrt 3 - \sqrt 5 } \over {\sqrt 3 + 1}} = {{ - 1 - 3\sqrt 3 - 2\sqrt 5 } \over {\sqrt 3 + 1}} \cr
& = 4 - \sqrt 3 - \sqrt 5 - \sqrt {15} \cr} \)

Sachbaitap.com

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link