Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 30 trang 53 Sách bài tập (SBT) Toán 8 tập 2

Chứng minh rằng: Trong ba số nguyên liên tiếp thì bình phương số đứng giữa lớn hơn tích hai số còn lại.

a. Với số a bất kì, chứng tỏ \(a\left( {a + 2} \right) < {\left( {a + 1} \right)^2}\)

b. Chứng minh rằng: Trong ba số nguyên liên tiếp thì bình phương số đứng giữa lớn hơn tích hai số còn lại.

Giải:

a. Ta có:

\(\eqalign{  & 0 < 1 \Rightarrow {a^2} + 2a + 0 < {a^2} + 2a + 1  \cr  &  \Rightarrow {a^2} + 2a < {\left( {a + 1} \right)^2}  \cr  &  \Rightarrow a\left( {a + 2} \right) < {\left( {a + 1} \right)^2} \cr} \)

b. Gọi a, a + 1, a + 2 là ba số nguyên liên tiếp, ta có:

\({\left( {a + 1} \right)^2} = {a^2} + 2a + 1\)         (1)

\(a\left( {a + 2} \right) = {a^2} + 2a\)            (2)

Từ (1) và (2) suy ra: \(a\left( {a + 2} \right) < {\left( {a + 1} \right)^2}\) (theo câu a)

Vậy trong ba số nguyên liên tiếp thì bình phương số đứng giữa lớn hơn tích hai số còn lại.

Sachbaitap.com

Xem lời giải SGK - Toán 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.