Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 32 trang 12 Sách bài tập (SBT) Toán 9 tập 2

Tìm giá trị của m.

Tìm giá trị của m để đường thẳng (d): \(y = \left( {2m - 5} \right)x - 5m\) đi qua giao điểm của hai đường thẳng \(\left( {{d_1}} \right):2x + 3y = 7\) và \(\left( {{d_2}} \right):3x + 2y = 13\)

Giải

Tọa độ giao điểm M của (d1) và (d2) là nghiệm của hệ phương trình:

\(\eqalign{
& \left\{ {\matrix{
{2x + 3y = 7} \cr
{3x + 2y = 13} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{4x + 6y = 14} \cr 
{9x + 6y = 39} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{5x = 25} \cr 
{3x + 2y = 13} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 5} \cr 
{3.5 + 2y = 13} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = 5} \cr 
{y = - 1} \cr} } \right. \cr} \)

Tọa độ M (5; -1)

Đường thẳng \(\left( d \right):y = \left( {2m - 5} \right)x - 5m\) đi qua M(5; -1) nên tọa độ của M nghiệm đúng phương trình đường thẳng:

\(\eqalign{
& - 1 = \left( {2m - 5} \right).5 - 5m \Leftrightarrow - 1 = 10m - 25 - 5m \cr
& \Leftrightarrow 5m = 24 \Leftrightarrow m = 4,8 \cr} \)

Vậy với m = 4,8 thì đường thẳng (d) đi qua giao điểm của (d1) và (d2).

Sachbaitap.com

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.