Câu 33 trang 13 Sách Bài Tập (SBT) Toán 7 tập 1Tìm giá trị nhỏ nhất. Tìm giá trị nhỏ nhất của: \(C = 1,7 + \left| {3,4 - x} \right|\) \(D = \left| {x + 2,8} \right| - 3,5\) Giải \(C = 1,7 + \left| {3,4 - x} \right|\) Vì \(\left| {3,4 - x} \right| \ge 0 \Rightarrow 1,7 + \left| {3,4 - x} \right| \ge 1,7\) Suy ra: \(C = 1,7 + \left| {3,4 - x} \right| \ge 1,7\) C có giá trị nhỏ nhất khi \(C{\rm{ }} = {\rm{ }}1,7 \) \(\Rightarrow \left| {3,4 - x} \right| = 0\) \( \Rightarrow x = 3,4\) Vậy C có giá trị nhỏ nhất bằng 1,7 khi x = 3,4 \(D = \left| {x + 2,8} \right| - 3,5\) Vì \(\left| {x + 2,8} \right| \ge 0 \Rightarrow \left| {x + 2,8} \right| - 3,5 \ge - 3,5\) Suy ra: \({\rm{D}} = \left| {x + 2,8} \right| - 3,5 \ge - 3,5\) D có giá trị nhỏ nhất khi \({\rm{D}} = - 3,5 \) \(\Rightarrow \left| {x + 2,8} \right| = 0 \) \(\Rightarrow x = - 2,8\) Vậy D có giá trị nhỏ nhất bằng -3,5 khi x= - 2,8 Sachbaitap.com
Xem lời giải SGK - Toán 7 - Xem ngay >> Học trực tuyến lớp 7 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả. |
Đặt một cặp dấu ngoặc () vào biểu thức ở vế trái để được kết quả đúng bằng vế phải.