Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 38 trang 243 SBT Đại số 10 Nâng cao

Giải bài tập Câu 38 trang 243 SBT Đại số 10 Nâng cao

Chứng minh rằng nếu \(\sin \left( {\alpha  - \beta } \right) = \dfrac{1}{3}\sin \beta ,\) thì \(\tan \left( {\alpha  - \beta } \right) = \dfrac{{\sin \alpha }}{{3 + \cos \alpha }}.\)

Giải:

\(\begin{array}{l}3\sin \left( {\alpha  - \beta } \right) = \sin \left( {\beta  - \alpha  + \alpha } \right)\\ = \sin \alpha \cos \left( {\alpha  - \beta } \right) - \sin \left( {\alpha  - \beta } \right)\cos \alpha \end{array}\)

từ đó ta có

\(\left( {3 + \cos \alpha } \right)\sin \left( {\alpha  - \beta } \right) = \sin \alpha \cos \left( {\alpha  - \beta } \right)\,\,\,\left( * \right)\) vậy \(\tan \left( {\alpha  - \beta } \right) = \dfrac{{\sin \alpha }}{{3 + \cos \alpha }}.\)

(Chú ý. \(\cos \left( {\alpha  - \beta } \right) \ne 0\) vì nếu \(\cos \left( {\alpha  - \beta } \right) = 0\) thì từ (*) ta suy ra \(\sin \left( {\alpha  - \beta } \right) = 0\), vô lí).

Sachbaitap.com