Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 40 trang 243 SBT Đại số 10 Nâng cao

Giải bài tập Câu 40 trang 243 SBT Đại số 10 Nâng cao

Tìm giá trị nhỏ nhất của biểu thức

\(4.\dfrac{{1 - \cos \alpha }}{{1 + \cos \alpha }} - \dfrac{2}{{{{\cos }^2}\dfrac{\alpha }{2}}} + 3\), (giả sử \(\cos \dfrac{\alpha }{2} \ne 0\))

Giải:

Đặt \(t = \tan \dfrac{\alpha }{2}\), thì

\(\begin{array}{l}4.\dfrac{{1 - \cos \alpha }}{{1 + \cos \alpha }} - \dfrac{2}{{{{\cos }^2}\dfrac{\alpha }{2}}} + 3\\ = 4{t^2} - 2\left( {1 + {t^2}} \right) + 3\\ = 2{t^2} + 1.\end{array}\)

nên giá trị nhỏ nhất đạt được là 1 khi \(t = 0\).

Sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Xem thêm tại đây: ÔN TẬP CUỐI NĂM - HÌNH HỌC