Câu 41 trang 34 Sách bài tập (SBT) Toán 8 tập 1Rút gọn các biểu thức ( chú ý đến thứ tự thực hiện các phép tính) : Rút gọn các biểu thức ( chú ý đến thứ tự thực hiện các phép tính) : a. \({{x + 1} \over {x + 2}}:{{x + 2} \over {x + 3}}:{{x + 3} \over {x + 1}}\) b. \({{x + 1} \over {x + 2}}:\left( {{{x + 2} \over {x + 3}}:{{x + 3} \over {x + 1}}} \right)\) c. \({{x + 1} \over {x + 2}}.{{x + 2} \over {x + 3}}:{{x + 3} \over {x + 1}}\) d. \({{x + 1} \over {x + 2}}.\left( {{{x + 2} \over {x + 3}}:{{x + 3} \over {x + 1}}} \right)\) e. \({{x + 1} \over {x + 2}}:{{x + 2} \over {x + 3}}.{{x + 3} \over {x + 1}}\) f. \({{x + 1} \over {x + 2}}:\left( {{{x + 2} \over {x + 3}}.{{x + 3} \over {x + 1}}} \right)\) Giải: a. \({{x + 1} \over {x + 2}}:{{x + 2} \over {x + 3}}:{{x + 3} \over {x + 1}}\)\( = {{x + 1} \over {x + 2}}.{{x + 3} \over {x + 2}}.{{x + 1} \over {x + 3}}\) \( = {{\left( {x + 1} \right)\left( {x + 3} \right)\left( {x + 1} \right)} \over {\left( {x + 2} \right)\left( {x + 2} \right)\left( {x + 3} \right)}} = {{{{\left( {x + 1} \right)}^2}} \over {{{\left( {x + 2} \right)}^2}}}\) b. \({{x + 1} \over {x + 2}}:\left( {{{x + 2} \over {x + 3}}:{{x + 3} \over {x + 1}}} \right)\) \(\eqalign{ & = {{x + 1} \over {x + 2}}:\left( {{{x + 2} \over {x + 3}}.{{x + 1} \over {x + 3}}} \right) = {{x + 1} \over {x + 2}}:{{\left( {x + 2} \right)\left( {x + 1} \right)} \over {{{\left( {x + 3} \right)}^2}}} \cr & = {{x + 1} \over {x + 2}}.{{{{\left( {x + 3} \right)}^2}} \over {\left( {x + 2} \right)\left( {x + 1} \right)}} = {{{{\left( {x + 3} \right)}^2}} \over {{{\left( {x + 2} \right)}^2}}} \cr} \) c. \({{x + 1} \over {x + 2}}.{{x + 2} \over {x + 3}}:{{x + 3} \over {x + 1}}\)\( = {{\left( {x + 1} \right)\left( {x + 2} \right)} \over {\left( {x + 2} \right)\left( {x + 3} \right)}}.{{x + 1} \over {x + 3}} = {{{{\left( {x + 1} \right)}^2}} \over {{{\left( {x + 3} \right)}^2}}}\) d. \({{x + 1} \over {x + 2}}.\left( {{{x + 2} \over {x + 3}}:{{x + 3} \over {x + 1}}} \right)\)\( = {{x + 1} \over {x + 2}}.\left( {{{x + 2} \over {x + 3}}.{{x + 1} \over {x + 3}}} \right) = {{x + 1} \over {x + 2}}.{{\left( {x + 2} \right)\left( {x + 1} \right)} \over {{{\left( {x + 3} \right)}^2}}}\) \( = {{{{\left( {x + 1} \right)}^2}} \over {{{\left( {x + 3} \right)}^2}}}\) e. \({{x + 1} \over {x + 2}}:{{x + 2} \over {x + 3}}.{{x + 3} \over {x + 1}}\)\( = {{x + 1} \over {x + 2}}.{{x + 3} \over {x + 2}}.{{x + 3} \over {x + 1}} = {{{{\left( {x + 3} \right)}^2}} \over {{{\left( {x + 2} \right)}^2}}}\) f. \({{x + 1} \over {x + 2}}:\left( {{{x + 2} \over {x + 3}}.{{x + 3} \over {x + 1}}} \right)\)\( = {{x + 1} \over {x + 2}}:{{x + 2} \over {x + 1}} = {{x + 1} \over {x + 2}}.{{x + 1} \over {x + 2}} = {{{{\left( {x + 1} \right)}^2}} \over {{{\left( {x + 2} \right)}^2}}}\) Sachbaitap.com
Xem lời giải SGK - Toán 8 - Xem ngay >> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 8. Phép chia các phân thức đại số
|
Đố. Đố em điền được một phân thức vào chỗ trống của đẳng thức sau: