Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 4.77 trang 115 SBT Đại số 10 Nâng cao

Giải bài tập Câu 4.77 trang 115 SBT Đại số 10 Nâng cao

Giải các bất phương trình sau :

a. \(\sqrt { - {x^2} - 8{ {x}} - 12}  > x + 4\)

b. \(\sqrt {5{{ {x}}^2} + 61{ {x}}}  < 4{ {x}} + 2\)

c. \(\begin{array}{l}\dfrac{{\sqrt {2 - x}  + 4{ {x}} - 3}}{x} \ge 2\\\end{array}\)

d. \(\dfrac{{3\left( {4{{ {x}}^2} - 9} \right)}}{{\sqrt {3{{ {x}}^2} - 3} }} \le 2{ {x}} + 3\)

Giải:

a. \( - 6 \le x \le  - 4 + \sqrt 2 .\)

Hướng dẫn. Bất phương trình tương đươngvới hệ :

\(\left\{ {\matrix{{ - {x^2} - 8x - 12 \ge 0} \cr {x + 4 < 0} \cr} } \right.\)

hoặc \(\left\{ {\matrix{{ - {x^2} - 8x - 12 > {{\left( {x + 4} \right)}^2}} \cr {x + 4 \ge 0.} \cr} } \right.\)

b. \(x \in \left[ {0;\dfrac{1}{{11}}} \right) \cup \left( {4; + \infty } \right).\)

Hướng dẫn. Bất phương trình tương đương với :

\(\left\{ {\begin{array}{*{20}{c}}{4{ {x}} + 2 > 0}\\{5{{ {x}}^2} + 61{ {x}} \ge 0}\\{5{{ {x}}^2} + 61{ {x}} < {{\left( {4{ {x}} + 2} \right)}^2}.}\end{array}} \right.\)

c. \(x \in \left( { - \infty ;0} \right) \cup \left[ {1;2} \right].\)

Hướng dẫn. Bất phương trình tương đương với :

\(\left\{ {\begin{array}{*{20}{c}}{x \ne 0}\\{x\left( {\sqrt {2 - x}  + 2{ {x}} - 3} \right) \ge 0.}\end{array}} \right.\)

d. \(x \in \left[ { - \dfrac{3}{2}; - 1} \right) \cup \left( {1;\dfrac{3}{2}} \right].\)

Hướng dẫn. Bất phương trình tương đương với :

\(\left\{ {\begin{array}{*{20}{c}}{3{{ {x}}^2} - 3 > 0}\\{\left( {2{ {x}} + 3} \right)\left[ {3\left( {2{ {x}} - 3} \right) - \sqrt {3{{ {x}}^2} - 3} } \right] \le 0.}\end{array}} \right.\)

Sachbaitap.com