Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 6.22 trang 198 SBT Đại số 10 Nâng cao

Giải bài tập Câu 6.22 trang 198 SBT Đại số 10 Nâng cao

Trong mặt phẳng tọa độ Oxy, xét các điểm M có tọa độ: \(\left( {3, - 4} \right),\left( {4, - 3} \right),\left( { - 12, - 9} \right),\left( { - 1,1} \right)\).

Hãy tính các giá trị lượng giác của các góc lượng giác \(\left( {Ox;OM} \right)\).

Giải:

M có tọa dộ \(\left( {x;y} \right) \ne \left( {0;0} \right)\), đặt sđ \(\left( {Ox,OM} \right) = \alpha \) thì

\(\cos \alpha  = \dfrac{x}{{\sqrt {{x^2} + {y^2}} }}\); \(\sin \alpha  = \dfrac{y}{{\sqrt {{x^2} + {y^2}} }}\). Vậy

 

\(\cos \alpha \)

\(\sin \alpha \)

\(\tan \alpha \)

\(\cot \alpha \)

\(M\left( {3; - 4} \right)\)

\(\dfrac{3}{5}\)

\( - \dfrac{4}{5}\)

\( - \dfrac{4}{3}\)

\( - \dfrac{3}{4}\)

\(M\left( {4; - 3} \right)\)

\(\dfrac{4}{5}\)

\( - \dfrac{3}{5}\)

\( - \dfrac{3}{4}\)

\( - \dfrac{4}{3}\)

\(M\left( { - 12; - 9} \right)\)

\( - \dfrac{4}{5}\)

\( - \dfrac{3}{5}\)

\(\dfrac{3}{4}\)

\(\dfrac{4}{3}\)

\(M\left( { - 1;1} \right)\)

\( - \dfrac{{\sqrt 2 }}{2}\)

\(\dfrac{{\sqrt 2 }}{2}\)

-1

-1

Sachbaitap.com