Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 71 trang 116 Sách Bài Tập (SBT) Toán 9 Tập 1

Một chiếc diều ABCD có AB = BC, AD = DC.

Một chiếc diều ABCD có AB = BC, AD = DC. Biết \(AB = 12cm,\widehat {ADC} = 40^\circ \)

\(\widehat {ABC} = 90^\circ \) (h.25)

Hãy tính:

a) Chiều dài cạnh AD;

b) Diện tích của chiếc diều.

Gợi ý làm bài

a) Nối AC và kẻ \(DH \bot AC\)

Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:

\(\eqalign{
& A{C^2} = A{B^2} + B{C^2} \cr
& = {12^2} + {12^2} = 144 + 144 = 288 \cr} \)

Suy ra: \(AC = 12\sqrt 2 \,(cm)\)

Ta có: tam giác ACD cân tại D

\(DH \bot AC\)

Suy ra: \(HA = HC = {{AC} \over 2} = 6\sqrt 2 \,(cm)\)

\(\widehat {ADH} = {1 \over 2}\widehat {ADC} = 20^\circ \)

Trong tam giác vuông ADH, ta có:

\(\eqalign{
& {\rm{AD = }}{{AH} \over {\sin \widehat {ADH}}} \cr
& = {{6\sqrt 2 } \over {\sin 20^\circ }} \approx 24,809\,(cm) \cr} \)

b) Ta có:

\({S_{ABC}} = {1 \over 2}.AB.BC = {1 \over 2}.12.12 = 72\,\) (cm2)

Trong tam giác vuông ADH, ta có:

\(\eqalign{
& DH = AH.\cot g\widehat {ADH} \cr
& = 6\sqrt 2 .\cot g20^\circ \approx 23,313\,(cm) \cr} \)

Mặt khác:

\(\eqalign{
& {S_{ADC}} = {1 \over 2}.DH.AC \cr
& \approx {1 \over 2}.23,313.12\sqrt 2 = 197,817 cm^2 \cr} \) 

Vậy Sdiều  

\(\eqalign{
& = {S_{ABC}} + {S_{ADC}} \cr
& = 72 + 197,817 = 269,817 cm^2.\cr} \) 

Sachbaitap.com

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.