Câu 8 trang 25 Sách bài tập (SBT) Toán 8 tập 1Chứng minh rằng có vô số cặp phân thức cùng mẫu Cho hai phân thức \({A \over B}\) và\({C \over D}\). Chứng minh rằng có vô số cặp phân thức cùng mẫu, có dạng \({{A'} \over E}\) và \({{C'} \over E}\) thỏa mãn điều kiện \({{A'} \over E} = {A \over B}\) và \({{C'} \over E} = {C \over D}\) Giải: Với hai phân thức \({A \over B}\) và \({C \over D}\) ta có được hai phân thức cùng mẫu \({{A.D} \over {B.D}}\) và\({{C.B} \over {B.D}}\). Ta nhân tử và mẫu của hai phân thức đó với cùng một đa thức M ≠ 0 bất kỳ, ta có hai phân thức mới cùng mẫu \({{A.D.M} \over {B.D.M}}\) và\({{C.B.M} \over {B.D.M}}\). Ta đặt B.D.M = E, A.D.M = A’, C.B.M = C’\( \Rightarrow {{A'} \over E} = {A \over {B}};\;{{C'} \over E} = {C \over D}\). Vì có vô số đa thức M ≠ 0 nên ta có vô số phân thức cùng mẫu bằng hai phân thức đã cho. Sachbaitap.com
Xem lời giải SGK - Toán 8 - Xem ngay >> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 2. Tính chất cơ bản của phân thức
|
Biến đổi mỗi phân thức sau thành phân thức có mẫu thức
Dùng tính chất cơ bản của phân thức chứng tỏ rằng các cặp phân thức sau bằng nhau: