Câu 91 trang 54 Sách Bài Tập (SBT) Toán lớp 7 tập 2a) Có nhận xét gì về các độ dài EH, EG, AK. Cho tam giác ABC, các đường phân giác của góc ngoài tại B và C cắt nhau ở E. Gọi G, H, K theo thứ tự là chân các đường vuông góc kẻ từ E đến các đường thẳng BC, AB, AC. a) Có nhận xét gì về các độ dài EH, EG, EK. b) Chứng minh AE là tia phân giác của góc BAC. c) Đường phân giác của góc ngoài tại A của tam giác ABC cắt đường thẳng BE, CE tại D, F. Chứng minh rằng AE vuông góc với DF. d) Các đường thẳng AE, BF, CD là các đường gì trong tam giác ABC? e) Các đường thẳng AE, FB, DC là các đường gì trong tam giác DEF? Giải a) E thuộc tia phân giác của \(\widehat {CBH}\) \( \Rightarrow \) EG = EH (tính chất tia phân giác) (1) E thuộc tia phân giác của \(\widehat {BCK}\) \( \Rightarrow \) EG = EK (tính chất tia phân giác) (2) Từ (1) và (2) suy ra: EH = EG = EK b) EH = EK \( \Rightarrow \) E thuộc tia phân giác của \(\widehat {BAC}\) mà E khác A Vậy AE là tia phân giác của \(\widehat {BAC}\) c) AE là tia phân giác góc trong tại đỉnh A. AF là tia phân giác góc ngoài tại đỉnh A. \( \Rightarrow \) \(A{\rm{E}} \bot {\rm{AF}}\) (tính chất hai góc kề bù) Hay \(A{\rm{E}} \bot {\rm{DF}}\) d) Chứng minh tương tự câu a ta có BF là tia phân giác của \(\widehat {ABC}\) CD là tia phân giác của \(\widehat {ACB}\) Vậy các đường AE, BF, CD là các đường phân giác của ∆ABC e) BF là phân giác góc trong tại đỉnh B. BE là phân giác góc ngoài tại đỉnh B. \(\Rightarrow BF \bot BE\) (tính chất hai góc kề bù) Hay \(BF \bot E{\rm{D}}\) CD là đường phân giác góc trong tại C CE là đường phân giác góc ngoài tại C \( \Rightarrow C{\rm{D}} \bot CE\) (tính chất hai góc kề bù) Hay \(C{\rm{D}} \bot {\rm{EF}}\) Các đường thẳng AE, FB, DC là các đường cao trong tam giác DEF. Sachbaitap.com
Xem lời giải SGK - Toán 7 - Xem ngay >> Học trực tuyến lớp 7 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả. |
Chứng minh rằng trong một tam giác, đường cao không lớn hơn đường trung tuyến xuất phát từ một đỉnh.
Chứng minh rằng đường thẳng MC là đường trung trực của đoạn thẳng AB.