Câu I.5 trang 15 Sách bài tập (SBT) Toán 8 tập 1Tính giá trị lớn nhất hoặc nhỏ nhất của các biểu thức sau: Tính giá trị lớn nhất hoặc nhỏ nhất của các biểu thức sau: a. A \( = 2{x^2} - 8x - 10\) b. B \( = 9x - 3{x^2}\) Giải: a. A \( = 2{x^2} - 8x – 10\) \( = 2\left( {{x^2} - 4x + 4} \right) - 18 = 2{\left( {x - 2} \right)^2} - 18\) \(2{\left( {x - 2} \right)^2} \ge 0 \Rightarrow 2{\left( {x - 2} \right)^2} - 18 \ge - 18\) Do đó giá trị nhỏ nhất của biểu thức A bằng -18 tại \(x = 2\) b. B \( = 9x - 3{x^2}\)\( = 3\left( {3x - {x^2}} \right) = 3\left( {{9 \over 4} - {9 \over 4} + 2.{3 \over 2}x - {x^2}} \right)\) \( = 3\left[ {{9 \over 4} - \left( {{9 \over 4} - .{3 \over 2}x + {x^2}} \right)} \right] = 3\left[ {{9 \over 4} - {{\left( {{3 \over 2} - x} \right)}^2}} \right] = {{27} \over 4} - 3{\left( {{3 \over 2} - x} \right)^2}\) Vì \({\left( {{3 \over 2} - x} \right)^2} \ge 0 \Rightarrow B = {{27} \over 4} - 3{\left( {{3 \over 2} - x} \right)^2} \le {{27} \over 4}\) do đó giá trị lớn nhất của B bằng \({{27} \over 4}\) tại \(x = {3 \over 2}\)
Xem lời giải SGK - Toán 8 - Xem ngay >> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài tập ôn Chương I. Phép nhân và phép chia các đa thức a
|