Câu II.3 trang 173 Sách bài tập (SBT) Toán lớp 9 Tập 1Cho đường tròn (O) và điểm A cố định trên đường tròn. Gọi xy là tiếp tuyến với đường tròn tại A. Từ một điểm M nằm trên xy, vẽ tiếp tuyến MB với đường tròn. Gọi H là trực tâm của tam giác MAB. Cho đường tròn (O) và điểm A cố định trên đường tròn. Gọi xy là tiếp tuyến với đường tròn tại A. Từ một điểm M nằm trên xy, vẽ tiếp tuyến MB với đường tròn. Gọi H là trực tâm của tam giác MAB. a) Chứng minh rằng ba điểm M, H, O thẳng hàng. b) Tứ giác AOBH là hình gì ? c) Khi M di chuyển trên xy thì H di chuyển trên đường nào ? Giải:
a) Gọi BD, AE là các đường cao của ∆MAB. Ta có ∆MAE = ∆MBD ( cạnh huyền – góc nhọn) nên ME = MD, ∆MHE = ∆MHD ( cạnh huyền – cạnh góc vuông) nên \(\widehat {EMH} = \widehat {DMH}\). MH và MO đều là tia phân giác của góc AMB nên M, H, O thẳng hàng. b) Tứ giác AOBH có BH // OA, AH // OB và OA = OB nên là hình thoi. c) H cách A cố định một khoảng bằng OA không đổi nên H di chuyển trên đường tròn (A ; AO). Sachbaitap.com Xem lời giải SGK - Toán 9 - Xem ngay >> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Ôn tập chương II - Đường tròn
|