Đề 3 trang 88 Sách bài tập (SBT) Hình học 11Cho tứ diện ABCD và M là điểm bất kì thuộc miền trong của tam giác BCD. Qua M kẻ các tia song song với AB, AC, AD. Các tia này theo thứ tự cắt các mặt (ACD), (ABD), (ABC) lần lượt tại B’, C’, D’ Cho tứ diện ABCD và M là điểm bất kì thuộc miền trong của tam giác BCD. Qua M kẻ các tia song song với AB, AC, AD. Các tia này theo thứ tự cắt các mặt (ACD), (ABD), (ABC) lần lượt tại B’, C’, D’ Câu 1. ( 3 điểm) Xác định các giao điểm B’, C’, D’ Câu 2. ( 3 điểm) Chứng minh \({{MB'} \over {AB}} + {{MC'} \over {AC}} + {{M{\rm{D}}'} \over {A{\rm{D}}}} = 1\) Câu 3. ( 4 điểm) Tìm giá trị lớn nhất của biểu thức \({{MB'} \over {AB}}.{{MC'} \over {AC}}.{{M{\rm{D}}'} \over {A{\rm{D}}}}\) Giải: Câu 1. (h.2.83) \(\left( {ABM} \right) \cap \left( {BC{\rm{D}}} \right) = BM\) Gọi I, J, K lần lượt là giao điểm của BM và CD; CM và BD; DM và BC. Ta có : \(\left( {ABM} \right) \cap \left( {AC{\rm{D}}} \right) = AI\). Trong mặt phẳng (ABM), kẻ \(MB'\parallel AB\) với \(B' = MB' \cap AI\). Ta có: \(B' = MB' \cap \left( {AC{\rm{D}}} \right)\) Các điểm C’ và D’ được xác định tương tự. Câu 2. (h.2.84) Trong tam giác ABI, ta có: \({{MB'} \over {AB}} = {{MI} \over {BI}}\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\) Tương tự ta cũng có: \({{MC'} \over {AC}} = {{MJ} \over {CJ}}\,\,\,\,\,\,\,\,\,\left( 2 \right)\) \({{MD'} \over {AD}} = {{MK} \over {DK}}\,\,\,\,\,\,\,\,\,\,\,\left( 3 \right)\) Cộng (1), (2), (3) lại ta có: \({{MB'} \over {AB}} + {{MC'} \over {AC}} + {{M{\rm{D}}'} \over {A{\rm{D}}}} = {{MI} \over {BI}} + {{MJ} \over {CJ}} + {{MK} \over {DK}}\) Ta chứng minh: \({{MI} \over {BI}} + {{MJ} \over {CJ}} + {{MK} \over {DK}} = 1\) Dễ thấy rằng : \({{{S_{MB{\rm{D}}}}} \over {{S_{CB{\rm{D}}}}}} = {{{1 \over 2}B{\rm{D}}.d\left( {M,B{\rm{D}}} \right)} \over {{1 \over 2}B{\rm{D}}{\rm{.d}}\left( {C,B{\rm{D}}} \right)}} = {{MJ} \over {CJ}}\) Tương tự \({{{S_{MC{\rm{D}}}}} \over {{S_{{\rm{BCD}}}}}} = {{MI} \over {BI}}\), \({{{S_{MBC}}} \over {{S_{DBC}}}} = {{MK} \over {DK}}\) Như vậy: \({{MI} \over {BI}} + {{MJ} \over {CJ}} + {{MK} \over {DK}} = {{{S_{MC{\rm{D}}}} + {S_{MB{\rm{D}}}} + {S_{MBC}}} \over {{S_{BC{\rm{D}}}}}} = {{{S_{BC{\rm{D}}}}} \over {{S_{BC{\rm{D}}}}}} = 1\) Câu 3. \({{MB'} \over {AB}} + {{MC'} \over {AC}} + {{MD'} \over {A{\rm{D}}}} \le {\left( {{{{{MI} \over {BI}} + {{MJ} \over {CJ}} + {{MK} \over {DK}}} \over 3}} \right)^3} = {1 \over 9}\). Dấu bằng xảy ra khi \({{MI} \over {BI}} = {{MJ} \over {CJ}} = {{MK} \over {DK}} = {1 \over 3}\), chẳng hạn khi M là trọng tâm. Vậy \(\max \left( {{{MB'} \over {AB}}.{{MC'} \over {AC}}.{{MD'} \over {A{\rm{D}}}}} \right) = {1 \over 9}\) Sachbaitap.com Xem lời giải SGK - Toán 11 - Xem ngay >> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
Xem thêm tại đây:
III. Đề kiểm tra
|