Giải SBT Toán 10 trang 8, 9, 10 Chân trời sáng tạo tập 2Giải bài 1 trang 8, bài 2, 3, 4, 5, 6 trang 9, bài 7, 8 trang 10 SBT Toán 10 Chân trời sáng tạo tập 2. Bài 4. Dựa vào đồ thị của hàm số bậc hai được cho trong hình dưới đây, xét dấu của tam thức bậc hai tương ứng: Bài 1 trang 8 SBT Toán 10 - Chân trời sáng tạo Tính biệt thức và nghiệm (nếu có) của tam thức bậc hai sau. Xác định dấu của chúng tại \(x = - 2\) a) \(f\left( x \right) = - 2{x^2} + 3x - 4\) b) \(g\left( x \right) = 2{x^2} + 8x + 8\) c) \(h\left( x \right) = 3{x^2} + 7x - 10\) Lời giải: a) Biệt thức của f(x) là \(\Delta = {3^2} - 4.\left( { - 2} \right).\left( { - 4} \right) = - 23\) Ta có \(\Delta < 0\) nên tam thức bậc hai đã cho vô nghiệm \(f( - 2) = - 2.{( - 2)^2} + 3.( - 2) - 4 = - 18 < 0\) nên \(f(x)\) âm tại \(x = - 2\) b) Biệt thức của g(x) là \(\Delta = {8^2} - 4.2.8 = 0\) Ta có \(\Delta = 0\) nên tam thức bậc hai đã cho có nghiệm kép \({x_1} = {x_2} = - 2\) Vậy nghiệm của g(x) là \( - 2\) Do đó \(g( - 2) = 0\) nên \(g(x)\) không âm, không dương tại \(x = - 2\) c) Biệt thức của h(x) là \(\Delta = {7^2} - 4.3.\left( { - 10} \right) = 169\) Ta có \(\Delta > 0\) nên tam thức bậc hai đã cho có hai nghiệm là \(x = - \frac{{10}}{3}\) hoặc \(x = 1\) Vậy nghiệm của h(x) là \( - \frac{{10}}{3}\) và 1 \(h( - 2) = 3.{( - 2)^2} + 7.( - 2) - 10 = - 12 < 0\) nên \(h(x)\) âm tại \(x = - 2\) Bài 2 trang 9 SBT Toán 10 - Chân trời sáng tạo Tìm giá trị của tham số m để: a) \(f\left( x \right) = \left( {2m - 8} \right){x^2} + 2mx + 1\) là một tam thức bậc hai b) \(f\left( x \right) = \left( {2m + 3} \right){x^2} + 3x - 4{m^2}\) là một tam thức bậc hai có \(x = 3\) là một nghiệm c) \(f\left( x \right) = 2{x^2} + mx - 3\) dương tại \(x = 2\) Lời giải: a) f(x) là tam thức bậc hai khi và chỉ khi \(2m - 8 \ne 0 \Leftrightarrow m \ne 4\) Vậy để \(f\left( x \right)\) là tam thức bậc hai thì \(m \ne 4\) b) f(x) là tam thức bậc hai khi và chỉ khi \(2m + 3 \ne 0 \Leftrightarrow m \ne - \frac{3}{2}\) Mặt khác, \(x = 3\) là nghiệm của f(x) khi và chỉ khi \(f\left( 3 \right) = 0\) hay \(f\left( 3 \right) = \left( {2m + 3} \right){.3^2} + 3.3 - 4{m^2} = 0 \Leftrightarrow - 4{m^2} + 18m + 36 = 0\) Suy ra \(m = - \frac{3}{2}\) hoặc \(m = 6\) Vậy để \(f\left( x \right)\) là tam thức bậc hai và có nghiệm là \(x = 3\) thì \(m = 6\) c) Hàm số f(x) có \(a = 2 \ne 0\) nên là tam thức bậc hai \(f\left( x \right) = 2{x^2} + mx - 3\) dương tại \(x = 2\) khi và chỉ khi \(f\left( 2 \right) > 0\) hay \(f\left( 2 \right) = {2.2^2} + 2m - 3 > 0 \Leftrightarrow m > - \frac{5}{2}\) Vậy để \(f\left( x \right)\) dương tại \(x = 2\) thì \(m > - \frac{5}{2}\) Bài 3 trang 9 SBT Toán 10 - Chân trời sáng tạo Tìm các giá trị của tham số m để: a) \(f\left( x \right) = \left( {{m^2} + 9} \right){x^2} + \left( {m + 6} \right)x + 1\) là một tam thức bậc hai có một nghiệm duy nhất b) \(f\left( x \right) = \left( {m - 1} \right){x^2} + 3x + 1\) là một tam thức bậc hai có hai nghiệm phân biệt c) \(f\left( x \right) = m{x^2} + \left( {m + 2} \right)x + 1\) là một tam thức bậc hai vô nghiệm Lời giải: a) Để \(f\left( x \right)\) là tam thức bậc hai thì \({m^2} + 9 \ne 0\) đúng với mọi \(m \in \mathbb{R}\) Mặt khác, tam thức trên có một nghiệm duy nhất khi và chỉ khi \(\Delta = 0\) hay \({\left( {m + 6} \right)^2} - 4.\left( {{m^2} + 9} \right) = 0 \Rightarrow - 3{m^2} + 12m = 0\) suy ra \(m = 0\) hoặc \(m = 4\) Vậy khi \(m = 0\) hoặc \(m = 4\) thì \(f\left( x \right) = \left( {{m^2} + 9} \right){x^2} + \left( {m + 6} \right)x + 1\) là một tam thức bậc hai có một nghiệm duy nhất b) Để \(f\left( x \right)\) là tam thức bậc hai thì \(m - 1 \ne 0 \Leftrightarrow m \ne 1\) (*) Mặt khác, tam thức trên có hai nghiệm phân biệt khi và chỉ khi \(\Delta > 0\) hay \({3^2} - 4.\left( {m - 1} \right) > 0 \Rightarrow - 4m + 13 > 0 \Leftrightarrow m < \frac{{13}}{4}\) (**) Kết hợp (*) và (**) ta được \(m \in \left( { - \infty ;\frac{{13}}{4}} \right)\backslash 1\) Vậy khi \(m \in \left( { - \infty ;\frac{{13}}{4}} \right)\backslash 1\) thì \(f\left( x \right) = \left( {m - 1} \right){x^2} + 3x + 1\) là một tam thức bậc hai có hai nghiệm phân biệt c) Để \(f\left( x \right)\) là tam thức bậc hai thì \(m \ne 0\) Mặt khác, tam thức trên vô nghiệm khi và chỉ khi \(\Delta < 0\) hay \({\left( {m + 2} \right)^2} - 4m < 0 \Rightarrow {m^2} + 4 < 0\) Ta có \({m^2} \ge 0\;\forall m \in \mathbb{R} \Rightarrow {m^2} + 4 \ge 4 > 0\;\forall m \in \mathbb{R}\), Vậy không có giá trị m thỏa mãn yêu cầu bài toán Bài 4 trang 9 SBT Toán 10 - Chân trời sáng tạo Dựa vào đồ thị của hàm số bậc hai được cho trong hình dưới đây, xét dấu của tam thức bậc hai tương ứng: Lời giải: a) \(f\left( x \right) > 0\) dương trên khoảng \(\left( { - \infty ; - 2,5} \right)\) và \(\left( {3; + \infty } \right)\) \(f\left( x \right) < 0\) âm trên khoảng \(\left( { - 2,5;3} \right)\) b) \(g\left( x \right) > 0\) dương với mọi \(x \ne - 1\) c) \(h\left( x \right) < 0\) âm với mọi \(x \in \mathbb{R}\) Bài 5 trang 9 SBT Toán 10 - Chân trời sáng tạo Xét dấu của các tam thức bậc hai sau: a) \(f\left( x \right) = {x^2} - 5x + 4\) b) \(f\left( x \right) = - \frac{1}{3}{x^2} + 2x - 3\) c) \(f\left( x \right) = 3{x^2} + 6x + 4\) d) \(f\left( x \right) = - 2{x^2} + 3x + 5\) e) \(f\left( x \right) = - 6{x^2} + 3x - 1\) g) \(f\left( x \right) = 4{x^2} + 12x + 9\) Lời giải: a) \(f\left( x \right) = {x^2} - 5x + 4\) có \(\Delta = 9 > 0\) , hai nghiệm phân biết \({x_1} = 1,{x_2} = 4\) và có \(a = 1 > 0\) Ta có bảng xét dấu \(f\left( x \right)\) như sau:
Vậy \(f\left( x \right)\) dương trong hai khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {4; + \infty } \right)\), âm trong khoảng \(\left( {1;4} \right)\) b) \(f\left( x \right) = - \frac{1}{3}{x^2} + 2x - 3\) có \(\Delta = 0\) , có nghiệm kép \({x_1} = {x_2} = 3\)và có \(a = - \frac{1}{3} < 0\) Vậy \(f\left( x \right)\) âm với mọi \(x \ne 3\) c) \(f\left( x \right) = 3{x^2} + 6x + 4\) có \(\Delta = - 12 < 0\) và có \(a = 3 > 0\) Vậy \(f\left( x \right)\) dương với mọi \(x \in \mathbb{R}\) d) \(f\left( x \right) = - 2{x^2} + 3x + 5\) có \(\Delta = 49 > 0\) , hai nghiệm phân biết \({x_1} = - 1,{x_2} = \frac{5}{2}\) và có \(a = - 2 < 0\) Ta có bảng xét dấu \(f\left( x \right)\) như sau:
Vậy \(f\left( x \right)\) âm trong khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {\frac{5}{2}; + \infty } \right)\), dương trong khoảng \(\left( { - 1;\frac{5}{2}} \right)\) e) \(f\left( x \right) = - 6{x^2} + 3x - 1\) có \(\Delta = - 15 < 0\) và có \(a = - 6 < 0\) Vậy \(f\left( x \right)\) âm với mọi \(x \in \mathbb{R}\) g) \(f\left( x \right) = 4{x^2} + 12x + 9\) có \(\Delta = 0\) , có nghiệm kép \({x_1} = {x_2} = - \frac{3}{2}\)và có \(a = 4 > 0\) Vậy \(f\left( x \right)\) dương với mọi \(x \ne - \frac{3}{2}\) Bài 6 trang 9 SBT Toán 10 - Chân trời sáng tạo Tìm các giá trị của tham số m để: a) \(f\left( x \right) = \left( {m + 1} \right){x^2} + 5x + 2\) là tam thức bậc hai không đổi dấu trên \(\mathbb{R}\) b) \(f\left( x \right) = m{x^2} - 7x + 4\) là tam thức bậc hai âm với mọi \(x \in \mathbb{R}\) c) \(f\left( x \right) = 3{x^2} - 4x + \left( {3m - 1} \right)\)là tam thức bậc hai dương với mọi \(x \in \mathbb{R}\) d) \(f\left( x \right) = \left( {{m^2} + 1} \right){x^2} - 3mx + 1\) là tam thức bậc hai âm với mọi \(x \in \mathbb{R}\) Lời giải: a) \(f\left( x \right)\) là tam thức bậc hai khi và khi \(m + 1 \ne 0 \Leftrightarrow m \ne - 1\) Mặt khác, để tam thức bậc hai không đổi dấu trên \(\mathbb{R}\) , tức là không cắt trục hoành (hay f(x)=0 vô nghiệm) khi và chỉ khi \(\Delta < 0\) hay \({5^2} - 4\left( {m + 1} \right).2 < 0 \Leftrightarrow - 8m + 17 < 0 \Leftrightarrow m > \frac{{17}}{8}\) Vậy để \(f\left( x \right) = \left( {m + 1} \right){x^2} + 5x + 2\) là tam thức bậc hai không đổi dấu trên \(\mathbb{R}\) thì \(m > \frac{{17}}{8}\) b) \(f\left( x \right)\) là tam thức bậc hai khi và khi \(m \ne 0\) Mặt khác, \(f\left( x \right)\) âm với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(a < 0\) và \(\Delta < 0\) hay \(\left\{ \begin{array}{l}m < 0\\{\left( { - 7} \right)^2} - 4m.4 < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 0\\m > \frac{{49}}{{16}}\end{array} \right.\) (Vô lý) Vậy không có giá trị nào của tham số m thỏa mãn yêu cầu. c) \(f\left( x \right)\) có \(a = 3 > 0\), suy ra \(f\left( x \right)\) dương với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(\Delta < 0\) hay \({\left( { - 4} \right)^2} - 4.3.\left( {3m - 1} \right) < 0 \Leftrightarrow - 36m + 28 < 0 \Leftrightarrow m > \frac{7}{9}\) Vậy để \(f\left( x \right) = 3{x^2} - 4x + \left( {3m - 1} \right)\)là tam thức bậc hai dương với mọi \(x \in \mathbb{R}\) thì \(m > \frac{7}{9}\) d) \(f\left( x \right) = \left( {{m^2} + 1} \right){x^2} - 3mx + 1\) có \(a = {m^2} + 1 > 0\forall m \in \mathbb{R}\) mà để \(f\left( x \right)\) âm với mọi \(x \in \mathbb{R}\) thì \(a < 0\) và \(\Delta < 0\) Vậy không tồn tại giá trị m để \(f\left( x \right) = \left( {{m^2} + 1} \right){x^2} - 3mx + 1\) là tam thức bậc hai âm với mọi \(x \in \mathbb{R}\) Bài 7 trang 10 SBT Toán 10 - Chân trời sáng tạo Chứng minh rằng a) \(2{x^2} + \sqrt 3 x + 1 > 0\) với mọi \(x \in \mathbb{R}\) b) \({x^2} + x + \frac{1}{4} \ge 0\) với mọi \(x \in \mathbb{R}\) c) \( - {x^2} < - 2x + 3\) với mọi \(x \in \mathbb{R}\) Lời giải: a) Tam thức \(2{x^2} + \sqrt 3 x + 1\) có \(\Delta = {\left( {\sqrt 3 } \right)^2} - 4.2 = - 5 < 0\) và \(a = 2 > 0\) Suy ra \(2{x^2} + \sqrt 3 x + 1 > 0\forall x \in \mathbb{R}\) (đpcm) b) Tam thức \({x^2} + x + \frac{1}{4}\) có \(\Delta = {1^2} - 4.\frac{1}{4} = 0\), có nghiệm kép \(x = - \frac{1}{2}\) và \(a = 1 > 0\) Suy ra \({x^2} + x + \frac{1}{4} \ge 0\) với mọi \(x \in \mathbb{R}\) (đpcm) c) \( - {x^2} < - 2x + 3\) với mọi \(x \in \mathbb{R}\) \( \Leftrightarrow {x^2} - 2x + 3 > 0\) với mọi \(x \in \mathbb{R}\) Xét tam thức \({x^2} - 2x + 3\) ta có \(\Delta = {\left( { - 2} \right)^2} - 4.3 = - 8 < 0\) và \(a = 1 > 0\) Suy ra \({x^2} - 2x + 3 > 0\) với mọi \(x \in \mathbb{R}\)\( \Leftrightarrow - {x^2} < - 2x + 3\) (đpcm) Bài 8 trang 10 SBT Toán 10 - Chân trời sáng tạo Xác định giá trị của các hệ số a, b, c và xét dấu của tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\) trong mỗi trường hợp sau: a) Đồ thị của hàm số \(y = f\left( x \right)\) đi qua ba điểm có tọa độ là \(\left( { - 1; - 4} \right),\left( {0;3} \right)\) và \(\left( {1; - 14} \right)\) b) Đồ thị của hàm số \(y = f\left( x \right)\) đi qua ba điểm có tọa độ là \(\left( {0; - 2} \right),\left( {2;6} \right)\) và \(\left( {3;13} \right)\) c) \(f\left( { - 5} \right) = 33,f\left( 0 \right) = 3\) và \(f\left( 2 \right) = 19\) Lời giải: a) Giả sử tam thức bậc hai có công thức tổng quát là \(f\left( x \right) = a{x^2} + bx + c\) Vì đồ thị của hàm số \(y = f\left( x \right)\) đi qua ba điểm có tọa độ là \(\left( { - 1; - 4} \right),\left( {0;3} \right)\) và \(\left( {1; - 14} \right)\) nên thay tọa độ của ba điểm vào phương trình tổng quát ta có: \(\left\{ \begin{array}{l} - 4 = a{\left( { - 1} \right)^2} + b\left( { - 1} \right) + c\\3 = a{.0^2} + b.0 + c\\ - 14 = a{\left( 1 \right)^2} + b\left( 1 \right) + c\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a - b + c = - 4\\c = 3\\a + b + c = - 14\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 12\\b = - 5\\c = 3\end{array} \right.\) Từ a, b, c đã xác định được ta có \(\Delta = 169 > 0\), tam thức có hai nghiệm phân biệt \(x = - \frac{3}{4}\) và \(x = \frac{1}{3}\), trong đó \(a = - 12 < 0\) Ta có bảng biến thiên sau đây
Vậy tam thức đã cho có dạng là \(f\left( x \right) = - 12{x^2} - 5x + 3\) dương trên khoảng \(\left( { - \frac{3}{4};\frac{1}{3}} \right)\), âm trên khoảng \(\left( { - \infty ; - \frac{3}{4}} \right)\) và \(\left( {\frac{1}{3}; + \infty } \right)\) b) Giả sử tam thức bậc hai có công thức tổng quát là \(f\left( x \right) = a{x^2} + bx + c\) Vì đồ thị của hàm số \(y = f\left( x \right)\) đi qua ba điểm có tọa độ là \(\left( {0; - 2} \right),\left( {2;6} \right)\) và \(\left( {3;13} \right)\) nên thay tọa độ của ba điểm vào phương trình tổng quát ta có: \(\left\{ \begin{array}{l} - 2 = a{.0^2} + b.0 + c\\6 = a{.2^2} + b.2 + c\\13 = a{.3^2} + b.3 + c\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}c = - 2\\4a + 2b + c = 6\\9a + 3b + c = 13\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 2\\c = - 2\end{array} \right.\) Từ a, b, c đã xác định được ta có \(\Delta = 12 > 0\), tam thức có hai nghiệm phân biệt \(x = - 1 - \sqrt 3 \) và \(x = - 1 + \sqrt 3 \), trong đó \(a = 1 > 0\) Ta có bảng biến thiên sau đây
Vậy tam thức đã cho có dạng là \(f\left( x \right) = {x^2} + 2x - 2\) âm trên khoảng \(\left( { - 1 - \sqrt 3 ; - 1 + \sqrt 3 } \right)\), dương trên khoảng \(\left( { - \infty ; - 1 - \sqrt 3 } \right)\) và \(\left( { - 1 + \sqrt 3 ; + \infty } \right)\) c) Giả sử tam thức bậc hai có công thức tổng quát là \(f\left( x \right) = a{x^2} + bx + c\) Vì \(f\left( { - 5} \right) = 33\) nên \(a.{( - 5)^2} + b.( - 5) + c = 33\) Vì \(f\left( 0 \right) = 3\) nên \(a{.0^2} + b.0 + c = 3\) Vì \(f\left( 2 \right) = 19\) nên \(a{.2^2} + b.2 + c = 19\) Từ đó ta có hệ \(\left\{ \begin{array}{l}a.{( - 5)^2} + b.( - 5) + c = 33\\a{.0^2} + b.0 + c = 3\\a{.2^2} + b.2 + c = 19\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}25a - 5b + c = 33\\c = 3\\4a + 2b + c = 19\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}25a - 5b = 30\\4a + 2b = 16\\c = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 4\\c = 3\end{array} \right.\) Vậy \(f(x) = 2{x^2} + 4x + 3\), có \(\Delta ' = {2^2} - 2.3 = - 2 < 0\) và \(a = 2 > 0\)nên \(f(x) > 0\) với mọi \(x \in \mathbb{R}\). Sachbaitap.com
Xem thêm tại đây:
Bài 1. Dấu của tam thức bậc hai - SBT Toán 10 CTST
|
Giải bài 1, 2 trang 13, bài 3, 4, 5, 6, 7, 8 trang 14, bài 9, 10, 11, 12 trang 15 SBT Toán 10 Chân trời sáng tạo tập 2. Bài 2. Dựa vào đồ thị của hàm số bậc hai đã cho, hãy nêu tập nghiệm của các bất phương trình bậc hai tương ứng