Loigiaihay.com 2024

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Giải SGK Toán 11 Cánh Diều tập 2 trang 94

Giải bài 1, 2, 3, 4, 5, 6 trang 94 SGK Toán lớp 11 Cánh Diều tập 2. Dốc là đoạn đường thẳng nối hai khu vực hay hai vùng có độ cao khác nhau. Độ dốc được xác định bằng góc giữa dốc và mặt phẳng nằm ngang, ở đó độ dốc lớn nhất là 100%.

Bài 1 trang 94 SGK Toán 11 - Cánh Diều tập 2

\(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\), đáy \(ABCD\) là hình thoi cạnh \(a\) và \(AC = a\).

a) Tính số đo của góc nhị diện \(\left[ {B,SA,C} \right]\).

b) Tính số đo của góc nhị diện \(\left[ {B,SA,D} \right]\).

c) Biết \(SA = a\), tính số đo của góc giữa đường thẳng \(SC\) và mặt phẳng \(\left( {ABCD} \right)\).

Phương pháp:

‒ Cách xác định góc nhị diện \(\left[ {{P_1},d,{Q_1}} \right]\)

Bước 1: Xác định \(c = \left( {{P_1}} \right) \cap \left( {{Q_1}} \right)\).

Bước 2: Tìm mặt phẳng \(\left( R \right) \supset c\).

Bước 3: Tìm \(p = \left( R \right) \cap \left( {{P_1}} \right),q = \left( R \right) \cap \left( {{Q_1}} \right),O = p \cap q,M \in p,N \in q\).

Khi đó \(\left[ {{P_1},d,{Q_1}} \right] = \widehat {MON}\).

‒ Cách tính góc giữa đường thẳng và mặt phẳng: Tính góc giữa đường thẳng đó và hình chiếu của nó lên mặt phẳng.

Lời giải:

a) Ta có: SA ⊥ (ABCD) và AB ⊂ (ABCD), AC ⊂ (ABCD).

Suy ra: SA ⊥ AB, SA ⊥ AC.

Mà AB ∩ AC = A ∈ SA.

Do đó là góc phẳng nhị diện của góc nhị diện [B, SA, C].

Vì ABCD là hinh thoi cạnh a và AC = a nên ta có AB = AC = BC = a.

Suy ra tam giác ABC đều. Khi đó 

Vậy số đo của góc nhị diện [B, SA, C] = 60°.

b) Ta có: SA ⊥ (ABCD) và AB ⊂ (ABCD), AD ⊂ (ABCD).

Suy ra: SA ⊥ AB, SA ⊥ AD.

Mà AB ∩ AD = A ∈ SA.

Do đó  là góc phẳng nhị diện của góc nhị diện [B, SA, D].

Vì ABCD là hinh thoi cạnh a và AC = a nên ta có AD = AC = CD = a.

Suy ra tam giác ACD đều. 

Vậy số đo của góc nhị diện [B, SA, D] bằng 120°.

c) Vì SA ⊥ (ABCD) nên AC là hình chiếu của SC trên (ABCD).

Suy ra góc giữa đường thẳng SA và mặt phẳng (ABC) là góc 

Xét tam giác SAC vuông tại (do SA ⊥ AC theo câu a) có:

Vậy góc giữa đường thẳng SA và mặt phẳng (ABCD) bằng 45°.

Bài 2 trang 94 SGK Toán 11 - Cánh Diều tập 2

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông, hai đường thẳng \(AC\) và \(BD\) cắt nhau tại \(O\), \(SO \bot \left( {ABCD} \right)\), tam giác \(SAC\) là tam giác đều.

a) Tính số đo của góc giữa đường thẳng \(SA\) và mặt phẳng \(\left( {ABCD} \right)\).

b) Chứng minh rằng \(AC \bot \left( {SBD} \right)\). Tính số đo của góc giữa đường thẳng \(SA\) và mặt phẳng \(\left( {SBD} \right)\).

c) Gọi \(M\) là trung điểm của cạnh \(AB\). Tính số đo của góc nhị diện \(\left[ {M,SO,D} \right]\).

Phương pháp:

‒ Cách tính góc giữa đường thẳng và mặt phẳng: Tính góc giữa đường thẳng đó và hình chiếu của nó lên mặt phẳng.

‒ Cách tính chứng minh đường thẳng vuông góc với mặt phẳng: Chứng minh đường thẳng đó vuông góc với hai đường thẳng cắt nhau nằm trong mặt phẳng.

‒ Cách xác định góc nhị diện \(\left[ {{P_1},d,{Q_1}} \right]\)

Bước 1: Xác định \(c = \left( {{P_1}} \right) \cap \left( {{Q_1}} \right)\).

Bước 2: Tìm mặt phẳng \(\left( R \right) \supset c\).

Bước 3: Tìm \(p = \left( R \right) \cap \left( {{P_1}} \right),q = \left( R \right) \cap \left( {{Q_1}} \right),O = p \cap q,M \in p,N \in q\).

Khi đó \(\left[ {{P_1},d,{Q_1}} \right] = \widehat {MON}\).

Lời giải:

a) Ta có SO ⊥ (ABCD) nên OA là hình chiếu của SA trên (ABCD).

Vậy số đo của góc giữa đường thẳng SA và mặt phẳng (ABCD) bằng 60°.

b) Ta có: SO ⊥ (ABCD) và AC ⊂ (ABCD) nên SO ⊥ AC.

Vì ABCD là hình vuông nên AC ⊥ BD.

Ta có: AC ⊥ SO, AC ⊥ BD và SO ∩ BD = O trong (SBD).

Suy ra AC ⊥ (SBD).

Hay AO ⊥ (SBD) nên SO là hình chiếu của SA trên (SBD).

Vậy góc giữa đường thẳng SA và mặt phẳng (SBD) bằng 30°.

c) Ta có AC ∩ BD = O.

Vì O ∈ BD mà BD ⊂ (SBD) nên O ∈ (SBD).

Suy ra O = AC ∩ (SBD).

Mặt khác AC ⊥ (SBD).

Từ đó ta có O là hình chiếu của A trên (SBD).

Mà S ∈ (SBD) nên ta có SO là hình chiếu của SA trên (SBD).

Như vậy, góc giữa đường thẳng SA và mặt phẳng (SBD) bằng góc giữa hai đường thẳng SA và SO và bằng 

Vì ABCD là hình vuông và AC ∩ BD = O nên O là trung điểm của AC và BD.

Xét tam giác SAC đều có SO là đường trung tuyến (do O là trung điểm của AC).

Vậy số đo của góc giữa đường thẳng SA và mặt phẳng (SBD) bằng 30°.

c) Ta có: SO ⊥ (ABCD) và MO ⊂ (ABCD), DO ⊂ (ABCD).

Suy ra SO ⊥ MO, SO ⊥ DO.

Mà MO ∩ SO = O ∈ SO.

Như vậy tam giác OAB vuông cân tại O.

Mặt khác OM là đường trung tuyến trong tam giác OAB (do M là trung điểm của AB)

Vậy số đo của góc nhị diện [M, SO, D] bằng 135°.

Bài 3 trang 94 SGK Toán 11 - Cánh Diều tập 2

Dốc là đoạn đường thẳng nối hai khu vực hay hai vùng có độ cao khác nhau. Độ dốc được xác định bằng góc giữa dốc và mặt phẳng nằm ngang, ở đó độ dốc lớn nhất là 100%, tương ứng với góc \({90^ \circ }\) (độ dốc 10% tương ứng với góc \({9^ \circ }\)). Giả sử có hai điểm \(A,B\) nằm ở độ cao lần lượt là 200 m, 220 m so với mực nước biển và đoạn dốc \(AB\) dài 120 m. Độ dốc đó bằng bao nhiêu phần trăm (làm tròn kết quả đến hàng phần trăm?

Phương pháp:

‒ Cách tính góc giữa đường thẳng và mặt phẳng: Tính góc giữa đường thẳng đó và hình chiếu của nó lên mặt phẳng.

Lời giải:

Bài toán được mô hình hóa như bài vẽ trên, với:

⦁ AB là chiều dài con dốc;

⦁ BI là độ cao của con dốc so với mặt phẳng nằm ngang;

⦁ AH và BK lần lượt là độ cao của điểm A và điểm B so với mặt nước biển.

Theo bài ra ta có: AH =  200 m, BK = 220 m, AB = 120 m và độ dốc của con dốc là góc được tạo bởi đường thẳng AB và đường thẳng AI (do AI là hình chiếu của AB trên mặt phẳng nằm ngang) và chính là số đo của 

Dễ thấy AHKI là hình chữ nhật nên IK = AH = 200 m.

Suy ra BI = BK – IK = 220 – 200 = 20 (m).

Vì tam giác ABI vuông tại I nên ta có:

Vậy độ dốc của con dốc đó khoảng 10,66%.

Bài 4 trang 94 SGK Toán 11 - Cánh Diều tập 2

Trong Hình 42, máy tính xách tay đang mở gợi nên hình ảnh của một góc nhị diện. Ta gọi số đo góc nhị diện đó là độ mở của màn hình máy tính. Tính độ mở của màn hình máy tính theo đơn vị độ, biết tam giác \(ABC\) có độ dài các cạnh là \(AB = AC = 30{\rm{ }}cm\) và \(BC = 30\sqrt 3 {\rm{ }}cm\).

Phương pháp:

‒ Cách xác định góc nhị diện \(\left[ {{P_1},d,{Q_1}} \right]\)

Bước 1: Xác định \(c = \left( {{P_1}} \right) \cap \left( {{Q_1}} \right)\).

Bước 2: Tìm mặt phẳng \(\left( R \right) \supset c\).

Bước 3: Tìm \(p = \left( R \right) \cap \left( {{P_1}} \right),q = \left( R \right) \cap \left( {{Q_1}} \right),O = p \cap q,M \in p,N \in q\).

Khi đó \(\left[ {{P_1},d,{Q_1}} \right] = \widehat {MON}\).

Lời giải:

Gọi d là đường thẳng chứa bản lề của máy tính.

Suy ra d ⊥ AB, d ⊥ AC.

Mặt khác AB ∩ AC = A ∈ d.

Vậy độ mở của màn hình máy tính là 120°.

Bài 5 trang 94 SGK Toán 11 - Cánh Diều tập 2

Trong Hình 43, xét các góc nhị diện có góc phẳng nhị diện tương ứng là \(\widehat B,\widehat C,\widehat D,\widehat E\) trong cùng mặt phẳng. Lục giác \(ABCDEG\) nằm trong mặt phẳng đó có \(AB = GE = 2{\rm{ }}m,BC = DE,\widehat A = \widehat G = {90^ \circ },\widehat B = \widehat E = x,\widehat C = \widehat D = y\). Biết rằng khoảng cách từ \(C\) và \({\rm{D}}\) đến \({\rm{AG}}\) là \(4{\rm{ }}m\), \(AG = 12{\rm{ }}m,CD = 1{\rm{ }}m\). Tìm x, y (làm tròn kết quả đến hàng đơn vị theo đơn vị độ).

Phương pháp:

Sử dụng công thức tính thể tích khối chóp cụt đều: \(V = \frac{1}{3}h\left( {S + \sqrt {SS'}  + S'} \right)\).

Lời giải:

Kẻ CH ⊥ AG (H ∈ AG), DK ⊥ AG (K ∈ AG).

Gọi I = BE ∩ CH, J = BE ∩ DK.

Ta có nên AB ⊥ AG và EG ⊥ AG.

Suy ra AB // EG.

⦁ Xét tứ giác ABEG có: AB // EG, AB = EG.

Suy ra ABEG là hình bình hành.

Hơn nữa nên ABEG là hình chữ nhật.

Suy ra BE = AG = 12 m và BE // AG.

⦁ Xét tứ giác ABIH có:

BI // AH (do BE //AG);

AB // IK (do cùng vuông góc với AG)

Suy ra ABIH là hình bình hành.

 IJ = CD = 1 m và CD // IJ (do CDJI là hình chữ nhật).

Suy ra: CI = CH – IH = 4 – 2 = 2 m;

             DJ = DK – JK = 4 – 2 = 2 m.

⦁ Xét tam giác BCI và tam giác EDJ có:

BC = ED (giả thiết);

CI = DJ (cùng bằng 2 m).

Do đó ∆BCI = ∆EDJ (cạnh huyền – cạnh góc vuông).

Vậy x ≈ 110° và y ≈ 160°.

Bài 6 trang 94 SGK Toán 11 - Cánh Diều tập 2

Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\). Gọi \(\alpha \) là số đo của góc nhị diện \(\left[ {A,BC,S} \right]\). Chứng minh rằng tỉ số diện tích của hai tam giác \(ABC\) và \(SBC\) bằng \(\cos \alpha \).

Phương pháp:

‒ Cách xác định góc nhị diện \(\left[ {{P_1},d,{Q_1}} \right]\)

Bước 1: Xác định \(c = \left( {{P_1}} \right) \cap \left( {{Q_1}} \right)\).

Bước 2: Tìm mặt phẳng \(\left( R \right) \supset c\).

Bước 3: Tìm \(p = \left( R \right) \cap \left( {{P_1}} \right),q = \left( R \right) \cap \left( {{Q_1}} \right),O = p \cap q,M \in p,N \in q\).

Khi đó \(\left[ {{P_1},d,{Q_1}} \right] = \widehat {MON}\).

Lời giải:

Kẻ AH ⊥ BC (H ∈ BC).

Vì SA ⊥ (ABC) và BC ⊂ (ABC) nên SA ⊥ BC.

Ta có: AH ⊥ BC, SA ⊥ BC và AH ∩ SA = A trong (SAH).

Suy ra BC ⊥ (SAH).

Mà SH ⊂ (SAH) nên BC ⊥ SH.

Ta có: AH ⊥ BC, SH ⊥ BC và AH ∩ SH = H ∈ BC.

Vì SA ⊥ (ABC) và AH ⊂ (ABC) nên SA ⊥ AH.

Xét tam giác SAH vuông tại A (do SA ⊥ AH) có:

Vậy tỉ số diện tích của hai tam giác ABC và SBC bằng cosα.

Sachbaitap.com

  • Giải SGK Toán 11 Cánh Diều tập 2 trang 99

    Giải SGK Toán 11 Cánh Diều tập 2 trang 99

    Giải bài 1, 2, 3, 4, 5, 6 trang 99 SGK Toán lớp 11 Cánh Diều tập 2. Chứng minh định lí sau: Nếu hai mặt phẳng vuông góc với nhau thì mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.