Giải SGK Toán 12 tập 1 Cánh Diều trang 93Giải bài 1, 2, 3 trang 93 SGK Toán 12 Cánh Diều tập 1. Cho mẫu số liệu ghép nhóm có tứ phân vị thứ nhất, thứ hai, thứ ba lần lượt là \({Q_1},{Q_2},{Q_3}\). Khoảng tứ phân vị của mẫu số liệu ghép nhóm đó bằng: Bài 1 trang 93 SGK Toán 12 Tập 1 Cánh Diều Cho mẫu số liệu ghép nhóm có tứ phân vị thứ nhất, thứ hai, thứ ba lần lượt là \({Q_1},{Q_2},{Q_3}\). Khoảng tứ phân vị của mẫu số liệu ghép nhóm đó bằng: A. \(2{Q_2}\) B. \({Q_1} - {Q_3}\) C. \({Q_3} - {Q_1}\) D. \({Q_3} + {Q_1} - {Q_2}\) Phương pháp: Khoảng tứ phân vị của mẫu số liệu ghép nhóm là hiệu giữa tứ phân vị thứ ba \({Q_3}\) và tứ phân vị thứ nhất \({Q_1}\) của mẫu số liệu ghép nhóm đó. Lời giải: Đáp án đúng là: C Khoảng tứ phân vị của mẫu số liệu ghép nhóm đó là ∆Q = Q3 – Q1. Bài 2 trang 93 SGK Toán 12 Tập 1 Cánh Diều Bảng 22, Bảng 23 lần lượt biểu diễn mẫu số liệu ghép nhóm về nhiệt độ không khí trung bình các tháng năm 2021 tại Hà Nội và Huế (đơn vị: độ C). a) Tính khoảng biến thiên, khoàng tứ phân vị, phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm của Hà Nội và Huế. b) Trong hai thành phố Hà Nội và Huế, thành phố nào có nhiệt độ không khí trung bình tháng đồng đều hơn? Phương pháp: a) Khoảng biến thiên là hiệu của đầu mút phải nhóm cuối cùng và đầu mút trái nhóm đầu tiên Khoảng tứ phân vị là \({Q_3} - {Q_1}\) Phương sai: \({s^2} = \frac{{{n_1}.{{({x_1} - \overline x )}^2} + {n_2}{{({x_2} - \overline x )}^2} + ... + {n_p}{{({x_p} - \overline x )}^2}}}{n}\) Độ lệch chuẩn: \(s = \sqrt {{s^2}} \) b) Thành phố nào có độ lệch chuẩn của nhiệt độ nhỏ hơn thì nhiệt độ không khí trung bình tháng đồng đều hơn Lời giải: a) * Hà Nội - Trong mẫu số liệu ghép nhóm ở Bảng 22, ta có: đầu mút trái của nhóm 1 là a1 = 16,8; đầu mút phải của nhóm 5 là a6 = 31,8. Vậy khoảng biến thiên của mẫu số liệu ghép nhóm được cho bởi Bảng 22 là: R = a6 – a1 = 31,8 – 16,8 = 15 (độ C). -Từ Bảng 22 ta có bảng thống kê sau: Số phần tử của mẫu là n = 12. + Ta có: mà 2 < 3 < 5. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 2 là nhóm [19,8; 22,8) có s = 19,8; h = 3; n2 = 3 và nhóm 1 là nhóm [16,8; 19,8) có cf1 = 2. Áp dụng công thức, ta có tứ phân vị thứ nhất là: + Ta có: > mà 8 < 9 < 12. Suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9. Xét nhóm 5 là nhóm [28,8; 31,8) có t = 28,8; l = 3; n5 = 4 và nhóm 4 là nhóm [25,8; 28,8) có cf4 = 8. Áp dụng công thức, ta có tứ phân vị thứ ba là: Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm được cho bởi Bảng 22 là: ∆Q = Q3 – Q1 = 29,55 – 20,8 = 8,75 (độ C). - Số trung bình cộng của mẫu số liệu ghép nhóm được cho bởi Bảng 22 là: Vậy phương sai của của mẫu số liệu ghép nhóm được cho bởi Bảng 22 là: - Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là: (độ C). * Huế - Trong mẫu số liệu ghép nhóm ở Bảng 23, ta có: đầu mút trái của nhóm 1 là a1 = 16,8; đầu mút phải của nhóm 5 là a6 = 31,8. Vậy khoảng biến thiên của mẫu số liệu ghép nhóm được cho bởi Bảng 23 là: R' = a6 – a1 = 31,8 – 16,8 = 15 (độ C). - Từ Bảng 23 ta có bảng thống kê sau:
Số phần tử của mẫu là n = 12. + Ta có: mà 1 < 3. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 2 là nhóm [19,8; 22,8) có s = 19,8; h = 3; n2 = 2 và nhóm 1 là nhóm [16,8; 19,8) có cf1 = 1. Áp dụng công thức, ta có tứ phân vị thứ nhất là: + Ta có: mà 8 < 9 < 12. Suy ra nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9. Xét nhóm 5 là nhóm [28,8; 31,8) có t = 28,8; l = 3; n5 = 4 và nhóm 4 là nhóm [25,8; 28,8) có cf4 = 8. Áp dụng công thức, ta có tứ phân vị thứ ba là: Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm được cho bởi Bảng 23 là: ∆'Q = Q'3 – Q'1 = 29,55 – 22,8 = 6,75 (độ C). - Số trung bình cộng của mẫu số liệu ghép nhóm được cho bởi Bảng 23 là: b) Vì s' ≈ 3,97 < s ≈ 4,56 nên thành phố Huế có nhiệt độ không khí trung bình tháng đồng đều hơn thành phố Hà Nội. Bài 3 trang 93 SGK Toán 12 Tập 1 Cánh Diều Bảng 24 thống kê độ ẩm không khí tủng bình các tháng năm 2021 tại Đà Lạt và Vũng Tàu (đơn vị: %) a) Hãy lần lượt ghép các số liệu của Đà Lạt, Vũng Tàu thành năm nhóm sau: [75;78,3), [78,3;81,6), [81,6;84,9), [84,9;88,2),[88,2;91,5) b) Tính khoảng biến thiên, khoảng tứ phân vị, phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm của Đà Lạt và Vũng Tàu c) Trong hai thành phố Đà Lạt và Vũng Tàu, thành phố nào có độ ẩm không khí trung bình tháng đồng đều hơn? Phương pháp: Khoảng biến thiên là hiệu của đầu mút phải nhóm cuối cùng và đầu mút trái nhóm đầu tiên Khoảng tứ phân vị là \({Q_3} - {Q_1}\) Phương sai: \({s^2} = \frac{{{n_1}.{{({x_1} - \overline x )}^2} + {n_2}{{({x_2} - \overline x )}^2} + ... + {n_p}{{({x_p} - \overline x )}^2}}}{n}\) Độ lệch chuẩn: \(s = \sqrt {{s^2}} \) Thành phố nào có độ lệch chuẩn của nhiệt độ nhỏ hơn thì nhiệt độ không khí trung bình tháng đồng đều hơn Lời giải: a) Từ Bảng 24, ta có các bảng thống kê sau: b) * Đà Lạt - Khoảng biến thiên của mẫu số liệu ghép nhóm của Đà Lạt là: R = 91,5 – 78,3 = 13,2 (%). -Từ bảng thống kê trên, ta có bảng thống kê của mẫu số liệu ghép nhóm của Đà Lạt: Số phần tử của mẫu là n = 12. - Ta có: mà 2 < 3. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 2 là nhóm [81,6; 84,9) có s = 81,6; h = 3,3; n2 = 1 và nhóm 1 là nhóm [78,3; 81,6) có cf1 = 2. Áp dụng công thức, ta có tứ phân vị thứ nhất là: - Ta có: mà 3 < 9 < 10. Suy ra nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9. Xét nhóm 3 là nhóm [84,9; 88,2) có t = 84,9; l = 3,3; n3 = 7 và nhóm 2 là nhóm [81,6; 84,9) có cf2 = 3. Áp dụng công thức, ta có tứ phân vị thứ ba là: Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm của Đà Lạt là: ∆Q = Q3 – Q1 = 87,7 – 84,9 = 2,8 (%). - Số trung bình cộng của mẫu số liệu ghép nhóm của Đà Lạt là: * Vũng Tàu - Khoảng biến thiên của mẫu số liệu ghép nhóm của Vũng Tàu là: R' = 84,9 – 75 = 9,9 (%). - Từ bảng thống kê trên, ta có bảng thống kê của mẫu số liệu ghép nhóm của Vũng Tàu: Số phần tử của mẫu là n = 12. + Ta có: mà 5 > 3. Suy ra nhóm 1 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3. Xét nhóm 1 là nhóm [75; 78,3) có s = 75; h = 3,3; n1 = 5. Áp dụng công thức, ta có tứ phân vị thứ nhất là: + Ta có: mà 5 < 9 < 11. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 9. Xét nhóm 2 là nhóm [78,3; 81,6) có t = 78,3; l = 3,3; n2 = 6 và nhóm 1 là nhóm [75; 78,3) có cf1 = 5. Áp dụng công thức, ta có tứ phân vị thứ ba là: Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm của Vũng Tàu là: ∆'Q = Q'3 – Q'1 = 80,5 – 76,98 = 3,52 (%). - Số trung bình cộng của mẫu số liệu ghép nhóm của Vũng Tàu là: c) Vì s' ≈ 2,06 < s ≈ 3,05 nên thành phố Vũng Tàu có độ ẩm không khí trung bình tháng đồng đều hơn thành phố Đà Lạt. Sachbaitap.com
Xem thêm tại đây:
Bài tập cuối chương 3
|