Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Giải Toán 7 trang 84 Kết nối tri thức với cuộc sống tập 2

Giải bài 9.36, 9.37, 9.38, 9.39, 9.40 trang 84 SGK Toán lớp 7 kết nối tri thức tập 2. Bài 9.36. Cho tam giác ABC có (widehat {BAC}) là góc tù. Lấy điểm D nằm giữa A và B, lấy điểm E nằm giữa A và C (H.9.51). Chứng minh DE < BC.

Bài 9.36 trang 84 SGK Toán 7 tập 2 - Kết nối tri thức

Cho tam giác ABC có \(\widehat {BAC}\) là góc tù. Lấy điểm D nằm giữa A và B, lấy điểm E nằm giữa A và C (H.9.51). Chứng minh DE < BC.

Phương pháp:

-Sử dụng tính chất bắc cầu

-Chứng minh DE < DC

-Chứng minh DC < BC

Lời giải:

=>DC>DE (quan hệ giữa góc và cạnh đối diện trong tam giác DEC). (1)

 Xét tam giác ADC có:

=>BC>DC (quan hệ giữa góc và cạnh đối diện trong tam giác BDC) (2)

- Từ (1) và (2) suy ra: BC>DE

Bài 9.37 trang 84 SGK Toán 7 tập 2 - Kết nối tri thức

Cho tam giác ABC ( AB > AC). Trên đường thẳng chứa cạnh BC, lấy điểm D và điểm E sao cho B nằm giữa D và C, C nằm giữa B và E, BD = BA, CE = CA ( H.9.52)

a) So sánh \(\widehat {ADE}\) và \(\widehat {AED}\).

b) So sánh các đoạn thẳng AD và AE.

Phương pháp:

a) \(AB > AC \Rightarrow \widehat {ABC} < \widehat {ACB}\)

-Chứng minh .

-\(\widehat {ABD} = {180^0} - 2\widehat {ADB}\),\(\widehat {ACE} = {180^0} - 2\widehat {AEC}\)

b)Sử dụng kết quả câu a)

Lời giải:

Bài 9.38 trang 84 SGK Toán 7 tập 2 - Kết nối tri thức

Gọi AI và AM lần lượt là đường cao và đường trung tuyến xuất phát từ đỉnh A của tam giác ABC. Chứng minh rằng

a)\(AI < \dfrac{1}{2}\left( {AB + AC} \right)\)

b)\(AM < \dfrac{1}{2}\left( {AB + AC} \right)\)

Phương pháp:

a)Sử dụng mối liên hệ giữa đường vuông góc và đường xiên, chứng minh AI < AB, AI < AC.

b) Lấy D sao cho M là trung điểm của AD

-Chứng minh AB = CD

-Áp dụng bất đẳng thức tam giác cho tam giác ACD.

Lời giải:

a) AI là đường cao từ A xuống đoạn thẳng BC=> AI là khoảng cách từ A đến BC => AI ngắn nhất

=> AI < AB và AI < AC

b) Lấy D sao cho M là trung điểm của AD

Xét ∆ ABM và ∆ DCM có

 AM = DM ( M là trung điểm củaAD)

  BM=CM ( M là trung điểm của BC)

=>  ∆ ABM = ∆ DCM

=>AB = CD

Xét  ∆ ADC ta có: AD < AC + CD

                   =>   2AM < AC + AB

                   

Bài 9.39 trang 84 SGK Toán 7 tập 2 - Kết nối tri thức

Cho tam giác ABC có đường phân giác AD, D nằm trên BC sao cho BD= 2 DC. Trên đường thẳng AC, lấy điểm E sao cho C là trung điểm của AE (H.9.53). Chứng minh rằng tam giác ABE cân tại A

Gợi ý D là trọng tâm của tam gíac ABE, tam giác này có đường phân giác AD đồng thời là trung tuyến.

Phương pháp:

-BD = 2 DC, BC là đường trung tuyến từ đó chứng minh được D là trọng tâm tam giác ABE

-AD là phân giác góc ABE

Lời giải:

C là trung điểm của AE => BC là trung tuyến của tam giác ABE (1)

D thuộc BC, BD= 2DC

=> BC= BD + DC = 2DC + DC = 3DC => DC =  BC (2)

Từ (1) và (2)=> D là trọng tâm của tam giác ABE

=> AD là đường trung tuyến ứng với BE

    mà AD là đường phân giác của  thuộc tam giác ABE

=> Tam giác ABE cân tại A

Bài 9.40 trang 84 SGK Toán 7 tập 2 - Kết nối tri thức

Một sợ dây thép dài 1,2m. Cần đánh dấu trên sợ dây thép đó hai điểm để khi uốn gập nó lại tại hai điểm đó sẽ tạo thành tam giác cân có một cạnh bằng 30 cm (h.9.54). Em hãy mô tả các cách đánh dấu hai điểm trên sợi dây thép.

Phương pháp:

-Chọn cạnh bên bằng 30 cm, tính cạnh đáy?

-Chọn cạnh đáy bằng 30 cm, tính cạnh bên?

Lời giải:

TH1: Cạnh bên bằng 30 cm

Khi đó cạnh đáy bằng: 120 – (30 + 30 ) =60 (cm)

Đánh dấu AB = CD = 30 cm, BC = 60 cm

TH2: Cạnh đáy bằng 30 cm

Khi đó cạnh bên bằng: (120 – 30) : 2 = 45 (cm)

Đánh dấu AB = CD = 45 cm

Sachbaitap.com

Xem thêm tại đây: Bài tập cuối chương IX