Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.14 trang 154 Sách bài tập (SBT) Đại số và giải tích 11

Cho dãy số (bn) có số hạng tổng quát là:

Cho dãy số \(\left( {{b_n}} \right)\) có số hạng tổng quát là \({b_n} = \sin \alpha  + {\sin ^2}\alpha  + ... + {\sin ^n}\alpha \) với \(\alpha  \ne {\pi  \over 2} + k\pi \). Tìm giới hạn của \(\left( {{b_n}} \right)\)

Giải:

Dãy số: \(\sin \alpha ,...,{\sin ^n}\alpha ,...\) với \(\alpha  \ne {\pi  \over 2} + k\pi \), là một cấp số nhân vô hạn, công bội \(q = \sin \alpha \)

Vì \(\left| {\sin \alpha } \right| < 1\) với \(\alpha  \ne {\pi  \over 2} + k\pi \) nên \(\left( {{{\sin }^n}\alpha } \right)\) là một cấp số nhân lùi vô hạn.

Hơn nữa, \({b_n} = \sin \alpha  + {\sin ^2}\alpha  + ... + {\sin ^n}\alpha  = {S_n}\)

Do đó, \(\lim {b_n} = \sin \alpha  + {\sin ^2}\alpha  + ... + {\sin ^n}\alpha  + ... = {{\sin \alpha } \over {1 - \sin \alpha }}\)

Xem lời giải SGK - Toán 11 - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.

Xem thêm tại đây: Bài 1. Giới hạn của dãy số