Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 2.3 trang 163 Sách bài tập (SBT) Đại số và giải tích 11

Giải thích bằng đồ thị kết luận ở câu a)

a)      Chứng minh rằng hàm số \(y = \sin x\) không có giới hạn khi \(x \to  + \infty \)

b)      Giải thích bằng đồ thị kết luận ở câu a).

Giải :

a)      Xét hai dãy số \(\left( {{a_n}} \right)\) với \({a_n} = 2n\pi \) và \(\left( {{b_n}} \right)\) với \(\left( {{b_n}} \right) = {\pi  \over 2} + 2n\pi {\rm{ }}\left( {n \in N*} \right)\)

Ta có, \(\lim {a_n} = \lim 2n\pi  =  + \infty \) ;

\(\lim {b_n} = \lim \left( {{\pi  \over 2} + 2n\pi } \right)\)

\(= \lim n\left( {{\pi  \over {2n}} + 2\pi } \right) =  + \infty \)

\(\lim \sin {a_n} = \lim \sin 2n\pi  = \lim 0 = 0\)

\(\lim \sin {b_n} = \lim \sin \left( {{\pi  \over 2} + 2n\pi } \right) = \lim 1 = 1\)

Như vậy,  \({a_n} \to  + \infty ,{\rm{  }}{b_n} \to  + \infty \) nhưng \(\lim \sin {a_n} \ne \lim \sin {b_n}\). Do đó, theo định nghĩa, hàm số \(y = \sin x\) không có giới hạn khi \(x \to  + \infty \)

Xem lời giải SGK - Toán 11 - Xem ngay

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Xem thêm tại đây: Bài 2. Giới hạn của hàm số