Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 2.3 trang 163 Sách bài tập (SBT) Đại số và giải tích 11

Giải thích bằng đồ thị kết luận ở câu a)

a)      Chứng minh rằng hàm số \(y = \sin x\) không có giới hạn khi \(x \to  + \infty \)

b)      Giải thích bằng đồ thị kết luận ở câu a).

Giải :

a)      Xét hai dãy số \(\left( {{a_n}} \right)\) với \({a_n} = 2n\pi \) và \(\left( {{b_n}} \right)\) với \(\left( {{b_n}} \right) = {\pi  \over 2} + 2n\pi {\rm{ }}\left( {n \in N*} \right)\)

Ta có, \(\lim {a_n} = \lim 2n\pi  =  + \infty \) ;

\(\lim {b_n} = \lim \left( {{\pi  \over 2} + 2n\pi } \right)\)

\(= \lim n\left( {{\pi  \over {2n}} + 2\pi } \right) =  + \infty \)

\(\lim \sin {a_n} = \lim \sin 2n\pi  = \lim 0 = 0\)

\(\lim \sin {b_n} = \lim \sin \left( {{\pi  \over 2} + 2n\pi } \right) = \lim 1 = 1\)

Như vậy,  \({a_n} \to  + \infty ,{\rm{  }}{b_n} \to  + \infty \) nhưng \(\lim \sin {a_n} \ne \lim \sin {b_n}\). Do đó, theo định nghĩa, hàm số \(y = \sin x\) không có giới hạn khi \(x \to  + \infty \)

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Xem thêm tại đây: Bài 2. Giới hạn của hàm số