Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.19 trang 23 Sách bài tập (SBT) Toán Hình học 10

Cho hình bình hành ABCD. Gọi O là một điểm bất kì trên đường chéo AC.

Cho hình bình hành ABCD. Gọi O là một điểm bất kì trên đường chéo AC. Qua O kẻ các đường thẳng song song với các cạnh của hình bình hành. Các đường thẳng này cắt AB và DC lần lượt tại M và N, cắt AD và BC lần lượt tại E và F. Chứng minh rằng:

a) \(\overrightarrow {OA}  + \overrightarrow {OC}  = \overrightarrow {OB}  - \overrightarrow {OD} \)

b) \(\overrightarrow {BD}  = \overrightarrow {ME}  + \overrightarrow {FN} \)

Gợi ý làm bài

(Xem h.1.44)

a) \(\overrightarrow {AB}  = \overrightarrow {OB}  - \overrightarrow {OA} \)

\(\overrightarrow {DC}  = \overrightarrow {OC}  - \overrightarrow {OD} \)

Vì \(\overrightarrow {AB}  = \overrightarrow {DC} \) nên ta có \(\overrightarrow {OB}  - \overrightarrow {OA}  = \overrightarrow {OC}  - \overrightarrow {OD} \)

Vậy \(\overrightarrow {OB}  + \overrightarrow {OD}  = \overrightarrow {OA}  + \overrightarrow {OC} \)

b) Tứ giác AMOE là hình bình hành nên ta có \(\overrightarrow {ME}  = \overrightarrow {MA}  + \overrightarrow {MO} (1)\)

Tứ giác OFCN là hình bình hành nên ta có \(\overrightarrow {FN}  = \overrightarrow {FO}  + \overrightarrow {FC} (2)\)

Từ (1) và (2) suy ra:

\(\overrightarrow {ME}  + \overrightarrow {EN}  = \overrightarrow {MA}  + \overrightarrow {MO}  + \overrightarrow {FO}  + \overrightarrow {FC}\)

\( = (\overrightarrow {MA}  + \overrightarrow {FO} ) + (\overrightarrow {MO}  + \overrightarrow {FC} ) = \overrightarrow {BA}  + \overrightarrow {BC}  = \overrightarrow {BD} \)

(Vì \(\overrightarrow {FO}  = \overrightarrow {BM} ,\overrightarrow {MO}  = \overrightarrow {BF} \))

Vậy \(\overrightarrow {BD}  = \overrightarrow {ME}  + \overrightarrow {FN} \)

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.