Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 12, 13, 14 trang 15 SGK Toán 9 tập 2 - Giải hệ phương trình bằng phương pháp thế

Giải bài 12, 13, 14 trang 15 sách giáo khoa (SGK) Toán lớp 9 tập 2 bài Giải hệ phương trình bằng phương pháp thế. Bài 12 Giải các hệ phương trình sau bằng phương pháp thế

Bài 12 trang 15 SGK Toán lớp 9 tập 2

Câu hỏi: 

Giải các hệ phương trình sau bằng phương pháp thế:

a) \(\left\{\begin{matrix} x - y =3 & & \\ 3x-4y=2 & & \end{matrix}\right.\)

b) \(\left\{\begin{matrix} 7x - 3y =5 & & \\ 4x+y=2 & & \end{matrix}\right.\)

c) \(\left\{\begin{matrix} x +3y =-2 & & \\ 5x-4y=11 & & \end{matrix}\right.\)

Lời giải:

a) 

Rút \(x\) từ phương trình trên rồi thế vào phương trình dưới , ta được:

\(\left\{ \matrix{
x - y = 3 \hfill \cr 
3x - 4y = 2 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = 3 + y \hfill \cr 
3\left( {3 + y} \right) - 4y = 2 \hfill \cr} \right.\)

\(\Leftrightarrow \left\{ \matrix{
x = 3 + y \hfill \cr 
9 + 3y - 4y = 2 \hfill \cr} \right.\)

\( \Leftrightarrow \left\{ \matrix{
x = 3 + y \hfill \cr 
- y = 2 - 9 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = 3 + y \hfill \cr 
y = 7 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = 3 + 7 \hfill \cr 
y = 7 \hfill \cr} \right.\)

\(\Leftrightarrow \left\{ \matrix{
x = 10 \hfill \cr 
y = 7 \hfill \cr} \right.\)

Vậy hệ đã cho có nghiệm là \((x;y)=(10; 7)\).

b) 

Rút \(y\) từ phương trình dưới rồi thế vào phương trình trên, ta có:

\(\left\{ \begin{array}{l}7x - 3y = 5\\4x + y = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}7x - 3y = 5\\y = 2 - 4x\end{array} \right.\)

 \( \Leftrightarrow \left\{ \begin{array}{l}y = 2 - 4x\\7x - 3.\left( {2 - 4x} \right) = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 2 - 4x\\7x - 6 + 12x = 5\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}y = 2 - 4x\\7x + 12x = 5 + 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 2 - 4x\\19x = 11\end{array} \right.\) 

\( \Leftrightarrow \left\{ \begin{array}{l}y = 2 - 4x\\x = \dfrac{{11}}{{19}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{{11}}{{19}}\\y = 2 - 4.\dfrac{{11}}{{19}}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{{11}}{{19}}\\y =  - \dfrac{6}{{19}}\end{array} \right.\)

Vậy hệ có nghiệm duy nhất là \({\left(\dfrac{11}{19}; \dfrac{-6}{19} \right)}\)

c) 

Rút \(x\) từ phương trình trên rồi thế vào phương trình dưới, ta có:

\(\left\{ \matrix{
x + 3y = - 2 \hfill \cr 
5x - 4y = 11 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = - 2 - 3y \hfill \cr 
5\left( { - 2 - 3y} \right) - 4y = 11 \hfill \cr} \right.\)

\(\Leftrightarrow \left\{ \matrix{
x = - 2 - 3y \hfill \cr 
- 10 - 15y - 4y = 11 \hfill \cr} \right.\)

\(\Leftrightarrow \left\{ \matrix{
x = - 2 - 3y \hfill \cr 
- 15y - 4y = 11 + 10 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = - 2 - 3y \hfill \cr 
- 19y = 21 \hfill \cr} \right.\)

\(\Leftrightarrow \left\{ \matrix{
x = - 2 - 3y \hfill \cr 
y = -  \dfrac{ 21}{ 19} \hfill \cr} \right.\)

\(\Leftrightarrow \left\{ \matrix{
x = - 2 - 3. \dfrac{ - 21}{19} \hfill \cr 
y = - \dfrac{21}{19} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = \dfrac{25}{19} \hfill \cr 
y = - \dfrac{21}{19} \hfill \cr} \right.\)

Vậy hệ có nghiệm duy nhất là \({\left(\dfrac{25}{19}; \dfrac{-21}{19} \right)}\)

Bài 13 trang 15 SGK Toán lớp 9 tập 2

Câu hỏi:

Giải các hệ phương trình sau bằng phương pháp thế:

a) \(\left\{\begin{matrix} 3x - 2y = 11 & & \\ 4x - 5y = 3& & \end{matrix}\right.\);          b) \(\left\{\begin{matrix} \dfrac{x}{2}- \dfrac{y}{3} = 1& & \\ 5x - 8y = 3& & \end{matrix}\right.\)

Lời giải:

a) Ta có:

\(\left\{ \matrix{
3x - 2y = 11 \hfill \cr
4x - 5y = 3 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2y = 3x - 11 \hfill \cr
4x - 5y = 3 \hfill \cr} \right. \)

\(\Leftrightarrow \left\{ \matrix{
y = \dfrac{3x - 11}{2}\  (1) \hfill \cr
4x - 5.\dfrac{3x - 11}{ 2} = 3 \  (2) \hfill \cr} \right.\)

Giải phương trình \((2)\):

\(4x - 5.\dfrac{3x - 11}{ 2} = 3\)

\(\Leftrightarrow \dfrac{8x}{2} - \dfrac{15x - 55}{2} = \dfrac{6}{2}\)

\(\Leftrightarrow \dfrac{8x - 15x + 55}{2} = \dfrac{6}{2}\)

\(\Leftrightarrow 8x - 15x + 55 = 6\)

\(\Leftrightarrow - 7x = 6 - 55\)

\(\Leftrightarrow  - 7x =  - 49\)

\(\Leftrightarrow x=7\)

Thay \(x=7\) vào phương trình \((1)\), ta được:

\(y = \dfrac{3.7 - 11}{2}=5\)

Vậy hệ có  nghiệm duy nhất là \((7; 5)\).

b) Ta có:

\(\left\{ \matrix{
\dfrac{x}{2} - \dfrac{y}{3} = 1 \hfill \cr
5x - 8y = 3 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
\dfrac{x }{2} = 1 + \dfrac{y}{3} \hfill \cr
5x - 8y = 3 \hfill \cr} \right. \)

\(\Leftrightarrow \left\{ \matrix{
x = 2 + \dfrac{2y}{3} \ (1) \hfill \cr
5{\left(2 + \dfrac{2y}{3} \right)} - 8y = 3 \  (2) \hfill \cr} \right.\)

Giải phương trình \((2)\), ta được:

\(5{\left(2 + \dfrac{2y}{3} \right)} - 8y = 3 \)

\( \Leftrightarrow  10 + \dfrac{10y}{3} -8y =3 \)

\( \Leftrightarrow  \dfrac{30}{3} +\dfrac{10y}{3} - \dfrac{24y}{3} = \dfrac{9}{3}\)

\( \Leftrightarrow  30+ 10y -24y=9\)

\( \Leftrightarrow  -14y=9-30\)

\( \Leftrightarrow  -14y=-21\)

\( \Leftrightarrow  y=\dfrac{21}{14}\) 

\( \Leftrightarrow y= \dfrac{3}{2}\)

Thay \(y= \dfrac{3}{2}\) vào \((1)\), ta được:

\(x = 2 + \dfrac{2. \dfrac{3}{2}}{3}=2+\dfrac{3}{3}=3.\)

Vậy hệ phương trình có nghiệm duy nhất \({\left(3; \dfrac{3}{2} \right)}.\)

Bài 14 trang 15 SGK Toán lớp 9 tập 2

Câu hỏi:

Giải các hệ phương trình bằng phương pháp thế:

a) \(\left\{\begin{matrix} x + y\sqrt{5} = 0& & \\ x\sqrt{5} + 3y = 1 - \sqrt{5}& & \end{matrix}\right.\)

b) \(\left\{\begin{matrix} (2 - \sqrt{3})x - 3y = 2 + 5\sqrt{3}& & \\ 4x + y = 4 -2\sqrt{3}& & \end{matrix}\right.\)

Lời giải:

a) 

Ta có:

\(\left\{ \matrix{
x + y\sqrt 5 = 0 \hfill \cr 
x\sqrt 5 + 3y = 1 - \sqrt 5 \hfill \cr} \right. \)

\(\Leftrightarrow \left\{ \matrix{
x = - y\sqrt 5 \hfill \cr 
\left( { - y\sqrt 5 } \right).\sqrt 5 + 3y = 1 - \sqrt 5 \hfill \cr} \right.\)

\( \Leftrightarrow \left\{ \matrix{
x = - y\sqrt 5 \hfill \cr 
- 5y + 3y = 1 - \sqrt 5 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = - y\sqrt 5 \hfill \cr 
- 2y = 1 - \sqrt 5 \hfill \cr} \right.\)

\( \Leftrightarrow \left\{ \matrix{
x = - y\sqrt 5 \hfill \cr 
y = \dfrac{1 - \sqrt 5 }{ - 2} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = - y\sqrt 5 \hfill \cr 
y = \dfrac{\sqrt 5 - 1}{2} \hfill \cr} \right.\) 

\(\Leftrightarrow \left\{ \matrix{
x = - \dfrac{\sqrt 5 - 1}{ 2}.\sqrt 5 \hfill \cr 
y = \dfrac{\sqrt 5 - 1}{2} \hfill \cr} \right.\)

\( \Leftrightarrow \left\{ \matrix{
x = - \dfrac{5 - \sqrt 5 }{2} \hfill \cr 
y = \dfrac{\sqrt 5 - 1}{2} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = \dfrac{\sqrt 5 - 5}{ 2} \hfill \cr 
y = \dfrac{\sqrt 5 - 1}{ 2} \hfill \cr} \right.\)

Vậy hệ phương trình có nghiệm duy nhất \( {\left(\dfrac{\sqrt 5 - 5}{ 2} ; \dfrac{\sqrt 5 - 1}{ 2} \right)}\)

b) 

Ta có:

\(\left\{ \matrix{
\left( {2 - \sqrt 3 } \right)x - 3y = 2 + 5\sqrt 3 \hfill \cr 
4x + y = 4 - 2\sqrt 3 \hfill \cr} \right.\)

\(\Leftrightarrow \left\{ \matrix{
\left( {2 - \sqrt 3 } \right)x - 3\left( {4 - 2\sqrt 3 - 4x} \right) = 2 + 5\sqrt 3  \      (1) \hfill \cr 
y = 4 - 2\sqrt 3 - 4x \     (2) \hfill \cr} \right.\)

Giải phương trình \((1)\), ta được:

\(( 2 - \sqrt 3 )x - 3(4 - 2\sqrt 3 - 4x) = 2 + 5\sqrt 3\)

\(\Leftrightarrow 2x -\sqrt 3 x -12 + 6 \sqrt 3 + 12x=2+ 5 \sqrt 3\)

\(\Leftrightarrow 2x -\sqrt 3 x + 12x=2+ 5 \sqrt 3 +12 -6 \sqrt 3 \)

\(\Leftrightarrow (2 -\sqrt 3  + 12)x= 2+12 +5\sqrt 3 -6 \sqrt 3 \)

\(\Leftrightarrow (14- \sqrt 3)x=14-\sqrt 3\)

\(\Leftrightarrow x=1\)

Thay \(x=1\), vào \((2)\), ta được:

\(y = 4 - 2\sqrt 3 - 4.1=-2 \sqrt 3.\)

Vậy hệ phương trình có nghiệm duy nhất \((1; -2 \sqrt 3).\)

Sachbaitap.com