Bài 1.23 trang 20 Sách bài tập (SBT) Giải tích 12Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số sau trên đoạn [2; 4] Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f(x) = x + {9 \over x}\) trên đoạn [2; 4] (Đề thi tốt nghiệp THPT năm 2008) Hướng dẫn làm bài: TXĐ: D = R\{0} \(\eqalign{ Hàm số nghịch biến trong các khoảng (-3; 0), (0; 3) và đồng biến trong các khoảng \(( - \infty ;3),(3; + \infty )\) Bảng biến thiên:
Ta có: \({\rm{[}}2;4] \subset (0; + \infty );f(2) = 6,5;f(3) = 6;f(4) = 6,25\) Suy ra : \(\mathop {\min }\limits_{{\rm{[}}2;4]} f(x) = f(3) = 6;\mathop {\max }\limits_{{\rm{[}}2;4]} f(x) = f(2) = 6,5\). Sachbaitap.com
Xem lời giải SGK - Toán 12 - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
|
Tìm các giá trị của m để phương trình : x3 – 3x2 – m = 0 có ba nghiệm phân biệt.
Cho số dương m. Hãy phân tích m thành tổng của hai số dương sao cho tích của chúng là lớn nhất.
Tìm hai số có hiệu là 13 sao cho tích của chúng là bé nhất.
Một chất điểm chuyển động theo quy luật s = 6t2 – t3 . Tính thời điểm t (giây) tại đó vận tốc v (m/s) của chuyển động đạt giá trị lớn nhất.