Bài 1.27 trang 20 Sách bài tập (SBT) Giải tích 12Một chất điểm chuyển động theo quy luật s = 6t2 – t3 . Tính thời điểm t (giây) tại đó vận tốc v (m/s) của chuyển động đạt giá trị lớn nhất. Một chất điểm chuyển động theo quy luật s = 6t2 – t3 . Tính thời điểm t (giây) tại đó vận tốc v (m/s) của chuyển động đạt giá trị lớn nhất. Hướng dẫn làm bài: \(s = 6{t^2} - {t^3},t > 0\) Vận tốc chuyển động là v = s’ , tức là v = 12t – 3t2 Ta có: v’ = 12 – 6t v’ = 0 ⇔ t = 2 Hàm số v đồng biến trên khoảng (0;2) và nghịch biến trên khoảng \((2; + \infty )\) . Vận tốc đạt giá trị lớn nhất khi t = 2. Khi đó \(\mathop {\max }\limits_{(0; + \infty )} V = {V_{CD}} = v(2) = 12(m/s)\). Sachbaitap.com
Xem lời giải SGK - Toán 12 - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
|
Hãy tìm tam giác vuông có diện tích lớn nhất nếu tổng của một cạnh góc vuông và cạnh huyền bằng hằng số a (a > 0).
Tìm các tiệm cận đường và ngang của đồ thị mỗi hàm số sau:
Chỉ ra một phép biến hình biến (H) thành (H’) có tiệm cận ngang y = 2 và tiệm cận đứng x = 2.