Loading [Contrib]/a11y/accessibility-menu.js
[2K8 XPS] MỞ ĐĂNG KÝ LỚP MỚI ÔN ĐGNL & ĐGTD 2026

ƯU ĐÃI 50% HỌC PHÍ + TẶNG BỘ SÁCH ÔN THI ĐGNL

Chỉ còn 1 ngày
Xem chi tiết

Bài 1.28 trang 20 Sách bài tập (SBT) Giải tích 12

Hãy tìm tam giác vuông có diện tích lớn nhất nếu tổng của một cạnh góc vuông và cạnh huyền bằng hằng số a (a > 0).

Hãy tìm tam giác vuông có diện tích lớn nhất nếu tổng của một cạnh góc vuông và cạnh huyền bằng hằng số a (a > 0).

Hướng dẫn làm bài:

 

Kí hiệu cạnh góc vuông AB là x, \(0 < x < {a \over 2}\)

Khi đó, cạnh huyền BC = a – x , cạnh góc vuông kia là:

  \(AC = \sqrt {B{C^2} - A{B^2}}  = \sqrt {{{(a - x)}^2} - {x^2}} \)     

Hay \(AC = \sqrt {{a^2} - 2ax} \)

Diện tích tam giác ABC là:

\(\eqalign{
& S(x) = {1 \over 2}x\sqrt {{a^2} - 2ax} \cr
& S'(x) = {1 \over 2}\sqrt {{a^2} - 2ax} - {1 \over 2}{{ax} \over {\sqrt {{a^2} - 2ax} }} = {{a(a - 3x)} \over {2\sqrt {{a^2} - 2ax} }} \cr
& S'(x) = 0 < = > x = {a \over 3} \cr} \)            

Bảng biến thiên:

 

Tam giác có diện tích lớn nhất khi \(AB = {a \over 3};BC = {{2a} \over 3}\)

Sachbaitap.com

Xem lời giải SGK - Toán 12 - Xem ngay

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.