Bài 1.29 trang 22 Sách bài tập (SBT) Giải tích 12Tìm các tiệm cận đường và ngang của đồ thị mỗi hàm số sau: Tìm các tiệm cận đường và ngang của đồ thị mỗi hàm số sau: a) \(y = {{2x - 1} \over {x + 2}}\); b) \(y = {{3 - 2x} \over {3x + 1}}\) c) \(y = {5 \over {2 - 3x}}\) d) \(y = {{ - 4} \over {x + 1}}\) Hướng dẫn làm bài: a) \(y = {{2x - 1} \over {x + 2}}\) Ta có: \(\mathop {\lim }\limits_{x \to - {2^ + }} {{2x - 1} \over {x + 2}} = - \infty ,\mathop {\lim }\limits_{x \to - {2^ - }} {{2x - 1} \over {x + 2}} = + \infty \) nên đường thẳng x = 2 là tiệm cận đứng của đồ thị hàm số. Vì \(\mathop {\lim }\limits_{x \to \pm \infty } {{2x - 1} \over {x + 2}} = \mathop {\lim }\limits_{x \to \pm \infty } {{2 - {1 \over x}} \over {1 + {2 \over x}}} = 2\) nên đường thẳng y = 2 là tiệm cận ngang của đồ thị hàm số. b) Từ \(\mathop {\lim }\limits_{x \to {{( - {1 \over 3})}^ + }} {{3 - 2x} \over {3x + 1}} = + \infty ;\mathop {\lim }\limits_{x \to {{( - {1 \over 3})}^ - }} {{3 - 2x} \over {3x + 1}} = - \infty \) , ta có \(x = - {1 \over 3}\) là tiệm cận đứng Vì \(\mathop {\lim }\limits_{x \to \pm \infty } {{3 - 2x} \over {3x + 1}} = \mathop {\lim }\limits_{x \to \pm \infty } {{{3 \over x} - 2} \over {3 + {1 \over x}}} = - {2 \over 3}\) nên đường thẳng \(y = - {2 \over 3}\) là tiệm cận ngang. c) Vì \(\mathop {\lim }\limits_{x \to {{({2 \over 3})}^ + }} {5 \over {2 - 3x}} = - \infty ;\mathop {\lim }\limits_{x \to {{({2 \over 3})}^ - }} {5 \over {2 - 3x}} = + \infty \) nên \(x = {2 \over 3}\) là tiệm cận đứng, Do \(\mathop {\lim }\limits_{x \to \pm \infty } {5 \over {2 - 3x}} = 0\) nên y = 0 là tiệm cận ngang. d) Do \(\mathop {\lim }\limits_{x \to - {1^ + }} {{ - 4} \over {x + 1}} = - \infty ;\mathop {\lim }\limits_{x \to - {1^ - }} {{ - 4} \over {x + 1}} = + \infty \) nên x = -1 là tiệm cận đứng. Vì \(\mathop {\lim }\limits_{x \to \pm \infty } {{ - 4} \over {x + 1}} = 0\) nên y = 0 là tiệm cận ngang. Sachbaitap.com
Xem lời giải SGK - Toán 12 - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 4. Đường tiệm cận
|
Chỉ ra một phép biến hình biến (H) thành (H’) có tiệm cận ngang y = 2 và tiệm cận đứng x = 2.
Tìm m để hàm số: (y = {1 over 3}m{x^3} + m{x^2} + 2(m - 1)x - 2) không có cực trị