Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 13 trang 172 Sách bài tập (SBT) Đại số và giải tích 11

Chứng minh rằng phương trình :

a) \({x^5} - 5x - 1 = 0\) có ít nhất ba nghiệm ;

b) \(m{\left( {x - 1} \right)^3}\left( {{x^2} - 4} \right) + {x^4} - 3 = 0\) luôn có ít nhất hai nghiệm với mọi giá trị của tham số m ;

c) \({x^3} - 3x = m\) có ít nhất hai nghiệm với mọi giá trị của $m \in \left( { - 2;2} \right)\)

Giải :

Hướng dẫn :

a)      Xét hàm số \(f\left( x \right) = {x^5} - 5x - 1\) trên các đoạn \(\left[ { - 2; - 1} \right],\left[ { - 1;0} \right],\left[ {0;3} \right]\)

b)      Xét hàm số \(f\left( x \right) = m{\left( {x - 1} \right)^3}\left( {{x^2} - 4} \right) + {x^4} - 3\) trên các đoạn \(\left[ { - 2;1} \right],\left[ {1;2} \right]\)

c)      Xét hàm số \(f\left( x \right) = {x^3} - 3x - m\) trên các đoạn \(\left[ { - 1;1} \right],\left[ {1;2} \right]\)

Xem lời giải SGK - Toán 11 - Xem ngay

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.