Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.39 trang 40 Sách bài tập (SBT) Hình học 11

Gọi A', B', C' tương ứng là ảnh của ba điểm A, B, C qua phép đồng dạng tỉ số k. Chứng minh rằng:

Gọi A', B', C' tương ứng là ảnh của ba điểm A, B, C qua phép đồng dạng tỉ số k. Chứng minh rằng: \(\overrightarrow {A'B'} .\overrightarrow {A'C'}  = {k^2}\overrightarrow {AB.} \overrightarrow {AC} \)

Giải:

Theo định nghĩa của phép đồng dạng ta có \(B'C' = kBC\), từ đó suy ra \(B'C{'^2} = {k^2}B{C^2}\).  Hay $${\left( {\overrightarrow {A'C'}  - \overrightarrow {A'B'} } \right)^2} = {k^2}{\left( {\overrightarrow {AC}  - \overrightarrow {AB} } \right)^2}\). Suy ra

\(A'C{'^2} - 2\overrightarrow {A'C'} .\overrightarrow {A'B'}  + A'B{'^2}\)

\(= {k^2}\left( {A{C^2} - 2\overrightarrow {AC} .\overrightarrow {AB}  + A{B^2}} \right)\).

Để ý rằng \(A'C{'^2} = {k^2}A{C^2},A'B{'^2} = {k^2}A{B^2}\) ta suy ra điều phải chứng minh.

Sachbaitap.com

Xem lời giải SGK - Toán 11 - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.