Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.39 trang 40 Sách bài tập (SBT) Hình học 11

Gọi A', B', C' tương ứng là ảnh của ba điểm A, B, C qua phép đồng dạng tỉ số k. Chứng minh rằng:

Gọi A', B', C' tương ứng là ảnh của ba điểm A, B, C qua phép đồng dạng tỉ số k. Chứng minh rằng: \(\overrightarrow {A'B'} .\overrightarrow {A'C'}  = {k^2}\overrightarrow {AB.} \overrightarrow {AC} \)

Giải:

Theo định nghĩa của phép đồng dạng ta có \(B'C' = kBC\), từ đó suy ra \(B'C{'^2} = {k^2}B{C^2}\).  Hay $${\left( {\overrightarrow {A'C'}  - \overrightarrow {A'B'} } \right)^2} = {k^2}{\left( {\overrightarrow {AC}  - \overrightarrow {AB} } \right)^2}\). Suy ra

\(A'C{'^2} - 2\overrightarrow {A'C'} .\overrightarrow {A'B'}  + A'B{'^2}\)

\(= {k^2}\left( {A{C^2} - 2\overrightarrow {AC} .\overrightarrow {AB}  + A{B^2}} \right)\).

Để ý rằng \(A'C{'^2} = {k^2}A{C^2},A'B{'^2} = {k^2}A{B^2}\) ta suy ra điều phải chứng minh.

Sachbaitap.com

Xem lời giải SGK - Toán 11 - Xem ngay

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.